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Journées Équations aux dérivées partielles
Évian, 8 juin–12 juin 2009
GDR 2434 (CNRS)

Resolvent estimates in controllability theory and
applications to the discrete wave equation

Sylvain Ervedoza
Abstract

We briefly present the difficulties arising when dealing with the controllabil-
ity of the discrete wave equation, which are, roughly speaking, created by high-
frequency spurious waves which do not travel. It is by now well-understood
that such spurious waves can be dealt with by applying some convenient fil-
tering technique. However, the scale of frequency in which we can guarantee
that none of these non-traveling waves appears is still unknown in general.
Though, using Hautus tests, which read the controllability of a given system
in terms of resolvent estimates, we are able to prove that these spurious waves
do not appear before some frequency scale. This document is based on the
articles [12, 13, 14].

1. Introduction

Let X be a Hilbert space endowed with the norm ‖·‖X and let A : D(A) → X
be a skew-adjoint operator with compact resolvent. Let us consider the following
abstract system:

ż(t) = Az(t), z(0) = z0. (1.1)
Here and henceforth, a dot (˙) denotes differentiation with respect to the time t. The
element z0 ∈ X is called the initial state, and z = z(t) is the state of the system.
Such systems are often used as models of vibrating systems (e.g., the wave equa-
tion), electromagnetic phenomena (Maxwell’s equations) or in quantum mechanics
(Schrödinger’s equation).

Assume that Y is another Hilbert space equipped with the norm ‖·‖Y . We denote
by L(X, Y ) the space of bounded linear operators from X to Y , endowed with the
classical operator norm. Let B ∈ L(D(A), Y ) be an observation operator and define
the output function

y(t) = Bz(t). (1.2)
In order to give a sense to (1.2), we make the assumption that B is an admissible
observation operator in the following sense (see, e.g., [47]):
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Definition 1.1. The operator B is an admissible observation operator for system
(1.1)–(1.2) if for every T > 0 there exists a constant KT > 0 such that∫ T

0
‖y(t)‖2Y dt ≤ KT ‖z0‖2X , ∀ z0 ∈ D(A). (1.3)

This implies in particular that for any z0 ∈ X, the observation y(t) = Bz(t) lies
in L2(0, T ;Y ).

Note that if B is bounded in X, i.e. if it can be extended such that B ∈ L(X, Y ),
then B is obviously an admissible observation operator. However, in applications,
this is often not the case, and the admissibility condition is then a consequence of
a suitable “hidden regularity” property of the solutions of the evolution equation
(1.1), see e.g. [31].

In the following, we will always assume that the continuous model (1.1)–(1.2) is
admissible, so that the observation y(t) in (1.2) always belongs to L2(0, T ;Y ).

Our main interest here is to study the exact observability property for system
(1.1)–(1.2), which can be formulated as follows:

Definition 1.2. System (1.1)–(1.2) is exactly observable in time T if there exists
kT > 0 such that

kT ‖z0‖2X ≤
∫ T

0
‖y(t)‖2Y dt, ∀ z0 ∈ X. (1.4)

Moreover, system (1.1)–(1.2) is said to be exactly observable if it is exactly observ-
able in some time T > 0.

Note that these observability issues arise naturally when dealing with controllabil-
ity and stabilization properties of linear systems (see for instance the textbook [31]).
Indeed, controllability and observability are dual notions, and therefore each state-
ment concerning observability has its counterpart in controllability. In the sequel,
we focus on the observability properties of (1.1)–(1.2).

There is an extensive literature providing observability results for wave, plate
and Schrödinger equations, among other models, and by various methods including
microlocal analysis [3, 4], multipliers techniques [29, 40], Carleman estimates [25,
48], Ingham type inequalities [27, 20], etc. Our goal in this paper is to develop a
theory allowing to get observability results for space semidiscrete systems as a direct
consequence of those corresponding to the continuous ones, thus avoiding technical
developments in the discrete setting.

One of the interesting features of the approach we shall present here (developed
in the articles [14, 13, 12]) is that it works in any dimension and in a very general
setting. To our knowledge, these were the first works which prove in a systematic
way observability properties for time and space semidiscrete systems from the ones
of the continuous setting.

Let us briefly comment some related works. Similar problems have been exten-
sively studied in the last decade for various space semi-discretizations of the 1d
wave equation, see for instance the review article [51] and the references therein.
The numerical schemes on uniform meshes given by the finite difference and finite
element methods do not have uniform observability properties, whatever the time
T is ([26]), thus yielding blow-up behaviors of the discrete controls. This is due to
high frequency waves which do not propagate, see [46, 33]. In other words, these
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numerical schemes create some spurious high-frequency wave solutions which are
localized and cannot be controlled.

Actually, as observed in [31], the norm of the control map (which maps initial
data to be controlled to the corresponding control of minimal L2-norm) coincides
with the constant of observability 1/

√
kT in (1.4). This is why we shall consider only

uniform observability properties for the discrete schemes, where uniform has to be
understood as uniformly with respect to the discretization parameters in both the
time and spaces variables.

In this context, filtering techniques have been extensively developed. It has been
proved in [26, 50] that filtering the initial data removes these spurious waves, and
makes possible uniform observability properties to hold. Other ways to filter these
spurious waves exist, for instance using a wavelet filtering approach [38] or bi-grids
techniques [18, 39]. However, to the best of our knowledge, these methods have been
analyzed only for uniform grids in small dimensions (namely in 1d or 2d). Also note
that these results prove uniform observability properties for larger classes of initial
data than the ones we shall state here, but in more particular cases. In particular,
our results below depend on neither the dimension nor the uniformity of the meshes.

Let us also mention that observability properties are equivalent to stabilization
properties (see [21]), when the observation operator is bounded. Therefore, observ-
ability properties can be deduced from the literature in stabilization theory. In
particular, we refer to the works [45, 44, 37, 15], which prove uniform stabilization
results for damped space semidiscrete wave equations in 1d and 2d, discretized on
uniform meshes using finite difference approximation schemes, in which a numer-
ical viscosity term has been added. Again, these results are better than the ones
derived here, but apply in the more restrictive context of 1d or 2d wave equations
on uniform meshes. Similar results have also been proved in [42], but using a non
trivial spectral condition on A, which reduces the scope of applications mainly to
1d equations.

To the best of our knowledge, there are very few paper dealing with nonuniform
meshes. A first step in this direction can be found in the context of the stabilization of
the 1d wave equation in [42]: Indeed, stabilization properties are equivalent (see [21])
to observability properties for the corresponding undamped systems. The results in
[42] can therefore be applied to 1d wave equations on nonuniform meshes to derive
uniform observability results at a scale 1/h (in the sense given below). However,
they strongly use a spectral gap condition on the eigenvalues of the operator A,
which does not hold for the wave operator in dimension higher than one. In the
following, we will explain how to get rid of that additional assumption and consider
more general observation operator B.

Another result in this direction is presented in [10], in the context of the 1d wave
equation discretized using a mixed finite element method as in [2, 6]. In [10], it is
proved that observability properties for schemes derived from a mixed finite element
method hold uniformly within a large class of nonuniform meshes.

For time semidiscrete equations, very few results are available. In [36], the 1d
wave equation is considered in a fully discrete setting on uniform meshes, using
Ingham type inequalities and the explicit knowledge of the discrete eigenvalues,
which is therefore hard to generalize in a more general setting. In [49], a time-discrete
multiplier technique is developed and proved that time semidiscrete N -dimensional
equations are not uniformly observable if some filtering condition is not added.
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However, the proof strongly uses the well-known space structure of the continuous
wave equation and then cannot be generalized easily to the fully discrete case.

We shall also mention recent works on spectral characterizations of exact ob-
servability for abstract conservative linear systems, which will be the basis of our
approach. We refer to [5, 34] for a very general approach of observability properties
for such conservative linear systems, which yields a necessary and sufficient resolvent
condition for exact observability to hold. Let us also mention the articles [32, 41],
which derived several spectral conditions for the exact observability of wave type
equations. In [41], a spectral characterization of the exact observability property
based on wave packets is also given. Our approach is inspired in all these works.

The outline of this article is the following.
We shall first present how our approach applies to time discretization schemes of

(1.1)–(1.2). We will then explain how these spectral approaches apply in the context
of space semidiscrete schemes. Finally, we give some further comments.

2. Time semidiscrete schemes

2.1. The midpoint scheme
Let us first present a natural discretization of the continuous system (1.1). For any
∆t > 0, we denote by zk and yk respectively the approximations of the solution z
and the output function y of system (1.1)–(1.2) at time tk = k∆t for k ∈ Z. Consider
the following implicit midpoint time discretization of system (1.1):

zk+1 − zk

∆t = A

(
zk+1 + zk

2

)
, in X, k ∈ Z,

z0 given.
(2.1)

The output function of (2.1) is now given by
yk = Bzk, k ∈ Z. (2.2)

Note that (2.1)–(2.2) is a discrete version of (1.1)–(1.2).
Taking into account that the spectrum of A is skew-adjoint, it is easy to show that

the energy
∥∥∥zk∥∥∥

X
is conserved in the discrete time variable k ∈ Z, i.e.

∥∥∥zk∥∥∥
X

= ‖z0‖X ,
similarly as for solutions of (1.1). Consequently the scheme under consideration is
stable and its convergence (in the classical sense of numerical analysis) is guaranteed
in an appropriate functional setting.

The uniform exact observability problem for system (2.1)–(2.2) is formulated as
follows:
To find a positive constant k̃T , independent of ∆t > 0, such that the solutions zk of
system (2.1) satisfy:

k̃T
∥∥∥z0

∥∥∥2

X
≤ ∆t

∑
k∆t∈(0,T )

∥∥∥Bzk∥∥∥2

Y
, (2.3)

for all initial data z0 in an appropriate class.
Clearly, (2.3) is a discrete version of (1.4).
In the sequel, we are interested in understanding under which assumptions in-

equality (2.3) holds uniformly on ∆t > 0. One expects to do it so that, when letting
∆t→ 0, one recovers the observability property of the continuous model.
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It can be done by means of a spectral filtering mechanism. More precisely, since A
is skew-adjoint with compact resolvent, its spectrum is discrete and σ(A) = {iµj :
j ∈ Z}, where (µj)j∈Z is an increasing sequence of real numbers. Set (Ψj)j∈Z an
orthonormal basis of eigenvectors of A associated to the eigenvalues (iµj)j∈Z:

AΨj = iµjΨj. (2.4)

Moreover, we define the filtered class

C[A](s) = Span{Ψj : the corresponding iµj satisfies |µj| ≤ s}. (2.5)

We will prove that inequality (2.3) holds uniformly (with respect to ∆t > 0) in the
class C[A](δ/∆t) for any δ > 0 and for Tδ large enough, depending on the filtering
parameter δ.

Theorem 2.1 ([14]). Assume that the continuous system (1.1)–(1.2) is admissible
and exactly observable.

Then, for any δ > 0, there exist Tδ such that for any T > Tδ, there exists two
positive constants kT,δ, KT,δ > 0, independent of ∆t, such that for ∆t > 0 small
enough, the solutions zk of (2.1) with initial data z0 ∈ C[A](δ/∆t) satisfy

kT,δ
∥∥∥z0

∥∥∥2

X
≤ ∆t

∑
k∆t∈(0,T )

∥∥∥Bzk∥∥∥2

Y
≤ KT,δ

∥∥∥z0
∥∥∥2

X
. (2.6)

Theorem 2.1 states uniform observability and admissibility properties within the
class C[A](δ/∆t). As one can check by using the counterexample in [49], one cannot
go in general beyond the scale 1/∆t: the observability estimate (2.6) is false in any
class C[A](1/f(∆t)) with f(∆t)/∆t→ 0 as ∆t→ 0.

Sketch of the proof. We only focus on the proof of the observability estimate in (2.6).
The admissibility property can be proved similarly by using Theorem 2.2 in [13].

The proof of Theorem 2.1 is based on the following result derived in [5, 34]:

Theorem 2.2 ([5, 34]). Assume that system (1.1)–(1.2) is admissible.
Then system (1.1)–(1.2) is exactly observable if and only if there exist positive

constants m,M > 0 such that

M2 ‖(iωI − A)z‖2X +m2 ‖Bz‖2Y ≥ ‖z‖
2
X , ∀ω ∈ R, ∀z ∈ D(A). (2.7)

Besides, the proof is entirely constructive. In particular, the constants in the ob-
servability estimate (1.4) can be made explicit: The observability estimate (1.4) holds
for any time T > T ∗, with

T ∗ = πM, kT = 2m2T

T 2 − π2M2 . (2.8)

Proof of Theorem 2.2. The complete proof can be found in [34]. Here, we are only
interested in proving that if the resolvent estimate (2.7) is satisfied, then the ob-
servability property (1.4) holds. The proof presented below is the one in [34].

Set z0 ∈ D(A), and let z(t) be the corresponding solution of (1.1). Set w(t) =
χ(t)z(t), where χ(t) is a cut-off function of time lying in H1(R) and compactly
supported. Then w solves w′ = Aw + χ′z, and its time Fourier transform satisfies

(iω − A)ŵ(ω) = χ̂′z(ω).
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In particular, plugging ŵ(ω) in (2.7) and integrating in the frequency variable ω ∈ R,
we obtain

M2
∫

R

∥∥∥χ̂′z(ω)
∥∥∥2

X
dω +m2

∫
R
‖Bŵ(ω)‖2Y dω ≥

∫
R
‖ŵ(ω)‖2X dω.

Using Parseval’s identity and the fact that ‖z(t)‖2X = ‖z0‖2X for solutions of (1.1),
this yields

‖z0‖2X
∫

R

(
|χ(t)|2 −M2|χ′(t)|2

)
dt ≤ m2

∫
R
|χ(t)|2 ‖Bz(t)‖2Y dt.

We then choose

χ(t) =

 sin
(
tπ

T

)
, for t ∈ (0, T ),

0, for t /∈ (0, T ).
Explicit computations then yields the observability estimate (1.2) with explicit con-
stants as in (2.8). �

Let us now explain how the proof of Theorem 2.1 works.
Assume that the continuous system (1.1)–(1.2) is admissible and exactly observ-

able. Then, according to Theorem 2.2, the operators (A,B) should satisfy the re-
solvent estimate (2.7).

We then mimic the above proof (of Theorem 2.2) with time-discrete Fourier trans-
form instead of time-continuous ones. This makes appear some extra term that can
be handled thanks to the filtering condition. Indeed, in the filtered space C[A](δ/∆t),
we have the following property: for κ ∈ [0, 1],

‖Aκz‖X ≤
(
δ

∆t

)κ
‖z‖X , ∀z ∈ C[A]

(
δ

∆t

)
.

In particular, our proof is explicit and we can even prove an estimate on the
time of observability: If B ∈ L(D(Aκ), Y ) for some κ ∈ [0, 1), then the discrete
observability estimates (2.6) hold uniformly with respect to ∆t > 0 in any time
T > Tδ, with

Tδ = πM

(
1 + δ2

4

)
. (2.9)

Note that this estimate is not the one obtained in [14], which is given for a general
observation operator B ∈ L(D(A), Y ). Estimate (2.9) has been derived afterwards
in [11]. �

2.2. General time-discretization schemes
In this section, we deal with more general time-discretization schemes of the form

zk+1 = T∆tz
k, yk = Bzk (2.10)

We will show that, under some appropriate assumptions on the operator T∆t, in-
equality (2.6) holds uniformly on ∆t for solutions of (2.10) when the initial data are
taken in the class C[A](δ/∆t).

More precisely, we assume that the discrete system (2.10) is conservative in the
sense that there exist real numbers µj,∆t such that

T∆tΨj = exp(iµj,∆t∆t)Ψj. (2.11)
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Moreover, we assume that there is an explicit relation between µj,∆t and µj of the
following form:

µj,∆t = 1
∆t h(µj∆t), (2.12)

where h : (−R,R) → [−π, π] is a smooth strictly increasing function, with R ∈
(0,∞], i.e.
∀η ∈ (−R,R), |h(η)| ≤ π, and ∀δ < R, inf{h′(η), |η| ≤ δ} > 0. (2.13)

The parameter R corresponds to a frequency limit R/∆t imposed by the discretiza-
tion scheme. Roughly speaking, the first part of (2.13) reflects the fact that one
cannot measure frequencies higher than π/∆t in a mesh of size ∆t. The second part
is a non-degeneracy condition on the group velocity (see [46]) of solutions of (2.10)
which is necessary to guarantee the propagation of solutions that is required for
observability to hold.

We also assume
lim
η→0

h(η)
η

= 1. (2.14)

This guarantees the consistency of the time-discrete scheme with the continuous
model (1.1).

Before going further, let us remark that the midpoint scheme (2.1) is a particular
instance of such time-discretization and the corresponding function h simply is

h(η) = 2 arctan
(
η

2

)
. (2.15)

We also point out that several time-discretization schemes fit this abstract setting,
as for instance the fourth-order Gauss method (a Runge-Kutta discretization which
preserves the energy), see e.g. [19].

We have the following theorem:

Theorem 2.3 ([14]). Assume that the continuous system (1.1)–(1.2) is admissible
and exactly observable.

Under assumptions (2.11), (2.12), (2.13) and (2.14), for any δ ∈ (0, R), there ex-
ists a time Tδ such that for all T > Tδ, there exist two positive constants kT,δ, KT,δ >
0 such that for all ∆t > 0 small enough, any solution of (2.10) with initial value
z0 ∈ C[A](δ/∆t) satisfies

kT,δ
∥∥∥z0

∥∥∥2

X
≤ ∆t

∑
k∆t∈(0,T )

∥∥∥∥∥B
(
zk + zk+1

2

)∥∥∥∥∥
2

Y

≤ KT,δ
∥∥∥z0

∥∥∥2

X
. (2.16)

Besides, if B ∈ L(D(Aκ), Y ) for some κ ∈ [0, 1), we have the following estimate on
Tδ:

Tδ ≤ πM
(

1 + tan2
(
h(δ)

2

))
sup
|η|≤δ

{cos2(h(η)/2)
h′(η)

}
. (2.17)

The proof of Theorem 2.3 follows the same lines of the one of Theorem 2.1, except
that the estimates are slightly more technical. This illustrates the robustness of these
resolvent estimates based techniques.

Also note that
h′(η)

cos2(h(η)/2) = d

dη

(
2 tan

(
h(η)

2

))
,
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thus explaining why this term does not appear in the case of the midpoint scheme,
see (2.15).

2.3. Application to family of operators
Since all the above proofs are constructive, one easily checks that family of systems
of the form (1.1) that are uniformly observable can be discretized in time so that
the corresponding time-discrete systems are uniformly observable.

More precisely, for h > 0, let Xh be a Hilbert space endowed with the norm
‖·‖h and let Ah : D(Ah) → Xh be a skew-adjoint operator with compact resolvent.
Consider then the systems

żh = Ahzh, zh(0) = z0h, (2.18)

observed by

yh(t) = Bhzh(t), (2.19)

for some operator Bh ∈ L(D(Ah), Yh).
Assume then that the systems (2.18)–(2.19) are admissible and observable uni-

formly with respect to h > 0, and such that

sup
h

{
‖Bh‖L(D(Ah),Yh)

}
<∞.

Then they satisfy uniformly the resolvent estimate (2.7), that is: There existsm,M >
0 such that for all h > 0,

M2 ‖(iωI − Ah)zh‖2h +m2 ‖Bhzh‖2Yh ≥ ‖zh‖
2
h , ∀ω ∈ R, ∀zh ∈ D(Ah). (2.20)

One can then follow the constructive proof of Theorem 2.1 to prove that, for any
δ > 0, the systems

zk+1
h − zkh

∆t = Ah

(
zk+1
h + zkh

2

)
, in Xh, k ∈ Z,

z0 ∈ Xh given,
ykh = Bhz

k
h, (2.21)

are admissible and exactly observable uniformly with respect to h > 0 and ∆t > 0
within the class of filtered data C[Ah](δ/∆t).

Of course, in our mind, systems (2.18)–(2.19) refer to space semidiscrete approx-
imation schemes of conservative systems, but it can be any family of systems de-
pending on a parameter, as for instance in homogenization theory.

Also note that, when Xh is a finite dimensional vector space, Ah is bounded, and
under the CFL type condition sup(h,∆t)→(0,0){‖Ah‖L(Xh) ∆t} <∞, the filtered space
C[Ah](δ/∆t) coincide with the whole space Xh by choosing δ > 0 large enough.

This argument allows then to reduce the study of the fully discrete approximations
of (1.1)–(1.2) to the study of its space semi-discretizations. We will present in the
next section some partial answers to that question.
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3. Space semidiscrete finite element approximations

In the following, we focus on two particular instances of (1.1)–(1.2), namely Schrödinger
type equations, which write{

iż = A0z, t ≥ 0,
z(0) = z0,

y(t) = B0z(t), t ≥ 0, (3.1)

and wave type equations{
ü+ A0u = 0, t ≥ 0,
u(0) = u0, u̇(0) = u1.

y(t) = B0u̇(t), t ≥ 0, (3.2)

where, in both cases, A0 stands for a self adjoint positive definite operator on
an Hilbert space H. The operator B0 in (3.1) or in (3.2) is assumed to be in
L(D(A1/2

0 ), Y ).
These two cases indeed fit the abstract setting of (1.1)–(1.2), and the observability

inequalities corresponding to (1.4) are, respectively,

kT ‖z0‖2X ≤
∫ T

0
‖B0z(t)‖2Y dt, (3.3)

kT

(∥∥∥A1/2
0 u0

∥∥∥2

X
+ ‖u1‖2X

)
≤
∫ T

0
‖B0u̇(t)‖2Y dt. (3.4)

Let us now describe the finite element method we use to discretize (3.1)–(3.2).
Consider (Vh)h>0 a sequence of vector spaces of finite dimension nh that embed

into H using a linear morphism ρh : Vh → H. For each h > 0, the inner product
< ·, · >H in H induces a structure of Hilbert space for Vh endowed by the scalar
product < ·, · >h=< ρh·, ρh· >H .

We assume that for each h > 0, the vector space ρh(Vh) is a subspace of D(A1/2
0 ).

We thus define the linear operator A0h : Vh → Vh by

< A0hφh, ψh >h=< A
1/2
0 πhφh, A

1/2
0 πhψh >H , ∀φh, ψh ∈ Vh. (3.5)

The operator A0h defined in (3.5) obviously is self-adjoint and positive definite. If
we introduce the adjoint ρ∗h of ρh, definition (3.5) implies that

A0h = (A1/2
0 ρh)∗A1/2

0 ρh = ρ∗hA0ρh. (3.6)

This operator A0h corresponds to the finite element discretization of A0. Systems
(3.1) and (3.2) are then discretized into

iżh = A0hzh, zh(0) = z0h ∈ Vh, (3.7)

and
üh + A0huh = 0, uh(0) = u0h ∈ Vh, u̇h(0) = u1h ∈ Vh, (3.8)

respectively.
In this context, for all h > 0, the observation operator naturally becomes B0h =

B0ρh, which obviously belongs to L(D(A1/2
0h ), Y ).

We now make precise the assumptions we have, usually, on ρh, and which will be
needed in our analysis. One easily checks that ρ∗hρh = IdVh . Besides, the embedding
ρh describes the finite element approximation we have chosen. In particular, the
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vector space ρh(Vh) approximates, in the sense given hereafter, the space D(A1/2
0 ):

There exist θ > 0 and C0 > 0, such that for all h > 0,
∥∥∥A1/2

0 (ρhρ∗h − I)φ
∥∥∥
H
≤ C0

∥∥∥A1/2
0 φ

∥∥∥
H
, ∀φ ∈ D(A1/2

0 ),∥∥∥A1/2
0 (ρhρ∗h − I)φ

∥∥∥
H
≤ C0h

θ ‖A0φ‖H , ∀φ ∈ D(A0).
(3.9)

Note that in many applications, and in particular for A0 the Laplace operator on
a bounded domain with Dirichlet boundary conditions, estimates (3.9) are satisfied
for θ = 1 when discretizing on regular meshes (see [43]).

We will not discuss convergence results for the numerical approximation schemes
presented here, which are classical under assumption (3.9), and which can be found
for instance in the textbook [43].

Let us mention that this question has already been investigated in [26] for the 1d
wave equation observed from the boundary on a 1d mesh. In [26], it has been proved
that, using a space semidiscrete approximation scheme for the 1d wave equation on
uniform meshes, discrete versions of (3.4) do not hold uniformly with respect to the
discretization parameter h > 0, because of the presence of spurious high frequency
solutions that do not travel. However, if the initial data are filtered in a suitable way,
then observability inequalities hold uniformly with respect to the space discretization
parameter.

Therefore, it is natural to restrict ourselves to filtered initial data. For all h > 0,
since A0h is a self adjoint positive definite matrix, the spectrum of A0h is given by
a sequence of positive eigenvalues

0 < λh1 ≤ λh2 ≤ · · · ≤ λhnh (3.10)
and normalized (in Vh) eigenvectors (Φhj )1≤j≤nh . For any s, we can now define, for
each h > 0, the filtered space

Ch(s) = Span
{

Φhj such that the corresponding eigenvalue satisfies |λhj | ≤ s
}
.

We are now in position to state the following results:

Theorem 3.1 ([13, 12]). Let A0 be a self-adjoint positive definite operator with
compact resolvent, and B0 ∈ L(D(Aκ0), Y ), with κ < 1/2. Assume that the maps
(ρh)h>0 satisfy property (3.9).

Schrödinger type equations: Set

σ = θmin
{

2(1− 2κ), 2
3

}
. (3.11)

Assume that system (3.1) is admissible and exactly observable.
Then there exist ε > 0, a time T ∗ and two positive constants k∗, K∗ > 0 such that,

for any h ∈ (0, 1), any solution of (3.7) with initial data
z0h ∈ Ch(ε/hσ) (3.12)

satisfies
k∗ ‖z0h‖2h ≤

∫ T ∗
0
‖B0hzh(t)‖2Y dt ≤ K∗ ‖z0h‖2h . (3.13)

Wave type equations: Set
ς = θmin{2(1− 2κ), 1}. (3.14)

Assume that system (3.2) is admissible and exactly observable.
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Then there exist ε > 0, a time T ∗ and two positive constants k∗, K∗ > 0 such that,
for any h ∈ (0, 1), any solution of (3.8) with initial data

(u0h, u1h) ∈ Ch(ε/hς)2 (3.15)
satisfies

k∗

( ∥∥∥A1/2
0h u0h

∥∥∥2

h
+ ‖u1h‖2h

)
≤
∫ T ∗

0
‖B0hu̇h(t)‖2Y dt

≤ K∗
( ∥∥∥A1/2

0h u0h

∥∥∥2

h
+ ‖u1h‖2h

)
. (3.16)

Note in particular that this yields the same results as the one obtained in [42] in
a 1d framework and generalizes it to any dimension.

One of the interesting features of these results is that they hold in any dimension
and in a very general setting. To our knowledge, [13, 12] are the first works which
proved in such a systematic way admissibility and observability properties for space
semidiscrete approximation schemes as a consequence of the ones of the continuous
setting.

The next sections will explain how the proofs of these statements can be derived
using resolvent estimates. As before, we will only explain how the uniform observ-
ability properties can be proved, since the admissibility ones can be derived similarly
(and are straightforward anyway when the observation operator B0 is bounded on
H).

3.1. The Schrödinger equation
Sketch of the proof (Schrödinger). Here, we focus on the case of Schrödinger equa-
tions.

First, one easily checks that the Schrödinger equation (3.1) can be written sim-
ilarly as (1.1)–(1.2) by setting X = H, A = −iA0, B = B0. Therefore the admis-
sibility and exact observability property of the continuous system can be read as a
resolvent estimate: there exist positive constants m and M such that

‖z‖2H ≤M
2 ‖(A0 − ωI)z‖2H +m2 ‖B0z‖2Y , ∀z ∈ D(A0), ∀ω ∈ R. (3.17)

One wants to prove a uniform observability result for the semidiscrete schemes
(3.7) within the class of filtered data Ch(ε/hσ). According to Theorem 2.2, this is
equivalent to prove the existence of m∗,M∗ > 0 such that for all h > 0,
‖zh‖2h ≤M

2
∗ ‖(A0h − ωI)zh‖2h +m2

∗ ‖B0hzh‖2Y , ∀ω ∈ R, ∀zh ∈ Ch(ε/hσ). (3.18)
Studying rapidly the dependence of this estimate of ωh, one easily checks that the
minimum of the right hand-side is achieved for ω ∈ [0, εh−σ], and thus we only need
to check (3.18) for ω ∈ [0, εh−σ].

We shall then explain how to prove (3.18) when (3.17) holds. This can be done
in the following way.

Fix zh ∈ Ch(ε/hσ) and ω ∈ [0, εh−σ].
Then take Zh ∈ D(A0) such that

A0Zh = ρhA0hzh. (3.19)
Such a Zh exists and is unique since A0 is self-adjoint positive definite. We shall now
plug Zh into (3.17) and measure the errors terms Zh − ρhzh in terms of zh. Note
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that this is precisely the idea of the a posteriori error estimates developed, among
others, by Babuska, see [1].

Using duality arguments together with the properties (3.9), one can obtain the
following estimate: for any α ∈ [0, 1/2),

‖Aα0 (Zh − ρhzh)‖X ≤ C0h
θ(1−2α)

∥∥∥A1/2
0h zh

∥∥∥
h
. (3.20)

The rest of the proof follows from careful estimates on the error term and the fact
that ∥∥∥A1/2

0h zh
∥∥∥
h
≤
√
εh−σ/2 ‖zh‖h , ∀zh ∈ Ch(ε/hσ).

The complete proof can be found in [13]. �

3.2. The wave equation
Sketch of the proof (Wave). The idea used to deal with the Schrödinger equation was
to use resolvent characterizations of the observability to prove uniform observability
results for the discrete Schrödinger equations. To sum up, the above proof has the
following pattern:

Exact observability property Uniform observability
for the continuous system for discretizations

⇓ ⇑
Resolvent estimate =⇒ Resolvent estimates

for the continuous system for the discrete systems

We should again follow the same pattern. This time, however, since the correspon-
dence between the wave equation (3.2) and its first order description as in (1.1) is
more intricate, it is convenient to use a characterization of the observability property
specially designed for second order systems:

Theorem 3.2 ([32, 41, 12]). Let A0 be a self-adjoint positive definite operator on
H with compact resolvent and B0 ∈ L(D(A1/2

0 ), Y ). Assume that system (3.2) is
admissible.

Then system (3.2) is exactly observable if and only if there exist positive constants
m and M such that

ω ‖u‖2H ≤M
2 ‖(A0 − ωI)u‖2H +m2ω ‖Bu‖2Y , ∀u ∈ D(A0), ∀ω ∈ R+. (3.21)

Besides, the proof is constructive. In particular, if the resolvent estimate (3.21)
holds, then the observability estimate (3.4) holds with constants depending explicitly
on m,M and the first eigenvalue of A0.

Note that, although Theorem 3.2 looks very similar to Theorem 2.2, its proof
is completely different and requires some more technical estimates, see [12] for the
complete proof.

Once Theorem 3.2 has been stated, the proof of the uniform observability property
for (3.8) can be done similarly as for the discrete Schrödinger equations (3.7).

The complete proof can be found in [12]. �
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3.3. From Schrödinger to the waves
When the Geometric Control Condition is satisfied, that is when the wave equation
is exactly observable (see [3, 4]), it is well-known that the corresponding Schrödinger
equation has better controllability properties, see e.g. [34]. In particular, it can be
controlled in any arbitrary small time T > 0.

Similarly, in the space semidiscrete setting, this is also the case:

Theorem 3.3 ([11]). Let A0 be a positive definite unbounded operator with compact
resolvent and B ∈ L(D(Aκ0), Y ), with κ < 1/2. Assume that the approximations
(ρh)h>0 satisfy property (3.9). Set

ς = θmin{2(1− 2κ), 1}. (3.22)
Then there exists ε > 0 such that for all T ∗ > 0, there exist positive constants

k∗, K∗ > 0 such that, for any h > 0, any solution of (3.7) with initial data z0h

z0h ∈ Ch

(
ε

hς

)
(3.23)

satisfies (3.13).

Note that Theorem 3.3 improves Theorem 3.1 (Schrödinger) in two ways: the
filtering scale is larger and the uniform observability property holds in any arbitrary
small time T > 0.

Sketch of the proof. The proof again mimics the one in [34] in the continuous case
to prove that the high-frequency solutions of the discrete Schrödinger equations, or
to be more precise, the solutions whose initial data are in Ch(εh−ς)∩Ch(K)⊥ for K
large enough independent of h > 0, can be observable in any time T > 0.

However, the finite-dimensional argument in [34] used to derive that any solution
can be observable in any time T > 0 cannot be used, since this is not constructive.

We shall rather use the argument developed in [20] to solve this problem. But
this argument strongly uses the fact that, since there are only a finite number of
eigenvalues in [0, K], there exists a positive constant γh such that

inf
λhj ∈[0,K]

{λhj+1 − λhj } ≥ γh.

But there is no reason for γh to be bounded from below uniformly in h > 0 by a
strictly positive constant.

We therefore need to combine the explicit construction in [20] with the conver-
gence of the spectrum in the range [0, K]. The idea is the following: The continuous
eigenvalues λ0

j are well-separated by some γ > 0. Therefore, fix α ∈ (0, γ/3), then,
for h > 0 small enough, the spectrum of the operators A0h satisfies:

{λhj } ∩ [0, K] ⊂ ∪λ0
j≤K [λ0

j − α, λ0
j + α].

Now, for any j such that λ0
j ≤ K, set

Xhj = Span{Φhk such that λhk ∈ [λ0
j − α, λ0

j + α]}.
Because of the resolvent estimate, it is easy to check that, taking α > 0 small
enough, there exists a constant c > 0 such that

∀j such that λ0
j ≤ K, ∀zh ∈ Xhj , c ‖zh‖h ≤ ‖Bzh‖Y .
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The constructive argument in [20] (see also [28]) can then be adapted. The complete
proof can be found in [11]. �

Remark 3.4. According to Section 2.3, all these results can be combined with The-
orems 2.1 and 2.3 to obtain uniform observability properties for fully-discrete ap-
proximation schemes of (3.1) and (3.2).

For instance, assuming that the continuous wave model (3.2) is admissible and
exactly observable, the fully discrete wave equation

uk+1
h + uk−1

h − 2ukh
(∆t)2 + A0h

(
uk−1
h + 2ukh + uk+1

h

4

)
= 0, k ∈ Z,

(
u0
h + u1

h

2 ,
u1
h − u0

h

∆t

)
= (u0h, u1h) ∈ V 2

h ,

(3.24)

observed through

ykh = B0h

(
uk+1
h − ukh

∆t

)

is exactly observable, uniformly with respect to both discretization parameters h > 0
and ∆t > 0 within the class(

Ch

(
ε

hσ

)
∩ Ch

(
δ2

(∆t)2

))2

=
(
Ch

(
min

{
ε

hσ
,
δ2

(∆t)2

}))2

.

4. Further comments

1. In this article, we have explained how the resolvent characterizations of the exact
observability property yield new results for time semidiscrete, space semidiscrete,
and according to Section 2.3, fully discrete approximation schemes of conservative
systems. These methods are robust and apply to a wide range of problems, including
admissibility properties (that can be derived similarly, see [14, 13, 12]), controlla-
bility properties ([13, 12]) and stabilization properties ([16, 17]).

2. A widely open question consists in finding the sharp filtering scale for uniform
observability property to hold for space semidiscrete approximation schemes on
nonuniform meshes. We think that the works [7, 8], which present a study of the
observability properties of the 1d wave equation in highly heterogeneous media,
might give some insights to address this issue.

3. In this article, we assumed that the continuous systems are exactly observable.
However, there are several important models of vibrations where the energy is only
weakly observable. That is the case for instance for networks of vibrating strings [9]
or when the Geometric Control Condition is not fulfilled (see [3, 30]). It would be
interesting to address the observability issues for the space semi-discretizations of
such systems. To our knowledge, this issue is widely open.

4. The resolvent estimates are also a well-known tool for dealing with Strichartz
estimates, see [35]. Again, we think that this approach can yield new results and
uniform dispersive estimates for discrete Schrödinger and wave equations, similarly
as what has been done in [23, 22, 24].
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