Center for diffusion of mathematic journals

 
 
 
 

Journées équations aux dérivées partielles

Table of contents for this volume | Previous article | Next article
Benoit Pausader
Scattering for the Beam equation
Journées équations aux dérivées partielles (2008), Exp. No. 7, 12 p., doi: 10.5802/jedp.51
Article PDF

Bibliography

[1] Bahouri, H., and Gerard, P., High frequency approximation of solutions to critical nonlinear wave equations, Amer. J. of Math., 121, (1999), 131–175.  MR 1705001 |  Zbl 0919.35089
[2] Bretherton, F.P., Resonant interaction between waves: the case of discrete oscillations, J. Fluid Mech., 20, (1964), 457–479.  MR 173459
[3] Carles, R. and Gallagher, I., Analyticity of the scattering operator for semilinear dispersive equations, Comm. Math. Phys. to appear.  MR 2472030 |  Zbl 1173.35677
[4] Duyckaerts, T., Holmer, J. and Roudenko, S., Scattering for the non-radial 3d cubic nonlinear Schroedinger equation, Math. Res. Lett. to appear.  MR 2470397 |  Zbl 1171.35472
[5] Glassey, R. T., On the asymptotic behavior of nonlinear wave equations. Trans. Amer. Math. Soc. 182 (1973), 187–200.  MR 330782 |  Zbl 0269.35009
[6] Hebey, E., and Pausader, B., An introduction to fourth order nonlinear wave equations, Lecture notes, 2007, http://www.u-cergy.fr/rech/pages/hebey/.
[7] Kenig, C., and Merle, F., Global well-posedness, scattering, and blow-up for the energy-critical focusing nonlinear Schrödinger equation in the radial case, Invent. Math. 166 No 3 (2006), 645–675.  MR 2257393 |  Zbl 1115.35125
[8] Levandosky, S. P., Stability and instability of fourth-order solitary waves, J. Dynam. Diff. Equ., 10, (1998), 151–188.  MR 1607537 |  Zbl 0893.35079
[9] —, Decay estimates for fourth order wave equations, J. Diff. Equ., 143, (1998), 360–413.  MR 1607964 |  Zbl 0901.35058
[10] Levandosky, S. P., and Strauss, W. A., Time decay for the nonlinear beam equation, Methods and Applications of Analysis, 7, (2000), 479–488.  MR 1869299 |  Zbl 1029.35182
[11] Lin, J.E., Local time decay for a nonlinear beam equation, Meth. Appl. Anal., 11 n1, (2004), 65–68. Article |  MR 2128351 |  Zbl pre02208418
[12] Love, A.E.H., A treatise on the mathematical theory of elasticity, Dover, New York, (1944).  MR 10851 |  Zbl 0063.03651 |  JFM 47.0750.09
[13] Miao, C., A note on time decay for the nonlinear beam equation. J. Math. Anal. Appl. 314 (2006), no. 2, 764–773.  MR 2185265 |  Zbl 1087.35065
[14] McKenna, P.J., and Walter, W., Nonlinear oscillations in a suspension bridge, Arch. Rational Mech. Anal., 87, (1987), 167–177.  MR 866720 |  Zbl 0676.35003
[15] —, Traveling waves in a suspension bridge, SIAM J. Appl. Math., 50, (1990), 703–715.  MR 1050908 |  Zbl 0699.73038
[16] Pausader, B., Scattering and the Levandosky-Strauss conjecture for fourth order nonlinear wave equations, J. Diff. Equ., 241 (2), (2007), 237–278.  MR 2358892 |  Zbl 1145.35090
[17] —, Scattering in small dimensions for the beam equation, preprint.
[18] Pausader, B., and Strauss, W. A., Analyticity of the Scattering Operator for Fourth-order Nonlinear Waves, preprint.
[19] Payne, L.E. and Sattinger, D.H., Saddle points and instability of nonlinear hyperbolic equations, Israel J. Math., 22, 1975, 273–303.  MR 402291 |  Zbl 0317.35059
[20] Tao, T., A (concentration-)compact attractor for high-dimensional non-linear Schrödinger equations, Dynamics of P.D.E. 4 (2007), 1-53.  MR 2304091 |  Zbl 1142.35088
Copyright Cellule MathDoc 2018 | Credit | Site Map