Centre de diffusion de revues académiques mathématiques

 
 
 
 

Journées équations aux dérivées partielles

Table des matières de ce volume | Article précédent | Article suivant
Alberto Ruiz
Regularizing estimates for Schrödinger and wave equations
Journées équations aux dérivées partielles (1993), Exp. No. 5, 12 p., doi: 10.5802/jedp.444
Article PDF | Analyses Zbl 0797.35020

Bibliographie

[AH] Agmon S., Hörmander L., Asymptotic properties of solutions of differential equations with simple characteristics. J. d'Analyse Mathématique, Vol. 30, 1976, 1-28  MR 57 #6776 |  Zbl 0335.35013
[ChR] Chiarenza F., Ruiz A., Uniform L2 weighted Sobolev inequalities. Proc. AMS., 112, (1), 1991, 53-64.  MR 91h:46057 |  Zbl 0745.35007
[ChF] Chiarenza, Frasca, A remark on a paper by C. Fefferman. Proc AMS, 1990  Zbl 0694.46029
[CS1] Constantin P., Saut J.C., Local smoothing properties of dispersive equations. J. of the AMS, 1, 1988, 413-139.  MR 89d:35150 |  Zbl 0667.35061
[CS2] Constantin P., Saut J.C., Local smoothing properties of Schrödinger equations. Indiana U. Math. J., 38, 3, 1989, 791-810.  MR 91e:35167 |  Zbl 0712.35022
[FP] C. Fefferman, P.Phong, Lower bounds for Schrödinger equations. Journes Eqs. D. P. St. Jean de Monts 1982. Cedram |  Zbl 0492.35057
[H] Harmse, J. On Lebesgue space estimates for the wave equation. Indiana University Math Journal 39.1 1990  MR 91j:35158 |  Zbl 0683.35008
[LP] Lions P.L., Perthame B., Lemmes de moments, de moyenne et de dispersion. C.R. Acad. Sci. Paris, t 314, Série, p. 801-806. 1992.  MR 93f:35217 |  Zbl 0761.35085
[K] Kato T. On the Cauchy problem for the (generalized) KdV equation. Adv. in Math. Supplementary Studies, Studies in Applied Math., 8, 1983, 93-128.  MR 86f:35160 |  Zbl 0549.34001
[KY] Kato T., Yajima K., Some examples of smooth operators and the associated smoothing effect. Review in Math. Physics, 1, 4, 1989.  MR 91i:47013 |  Zbl 0833.47005
[KPV2] Kenig C., Ponce G., Vega L., Small solutions for non linear Schrödinger equations. To appear in Ann. I. Henri Poincaré. Numdam |  Zbl 0786.35121
[KRS] Kenig C., Ruiz A., Sogge C., Uniform Sobolev inequalities and unique continuation for second order constant coefficients differential operators. Duke Math. J., 55, 1987, 329-347. Article |  MR 88d:35037 |  Zbl 0644.35012
[RV] Ruiz A., Vega L., Unique continuation for Schrödinger operators with potential in Morrey spaces. Publications Matemátiques, 35, 1991, 291-298.  MR 92e:35039 |  Zbl 0809.47046
[RV2] Ruiz A., Vega L., On local regularity of Schrödinger equations. Int. Math. Research Notices. N 1. 13-27. Duke Math. J. 1993  MR 94c:35060 |  Zbl 0812.35016
[RV3] Smoothing effect for Schródinger and wave equations. In preparation
[SSj] Sjögren P., Sjölin P., Convergence properties for the time dependent Schrödinger equation. To appear in Ann. Acad. Sci. Fenn..  Zbl 0629.35055
[Sj] Sjölin P., Regularity of solutions to the Schrödinger equations. Duke Math. J., 55, 1987, 699-715. Article |  Zbl 0631.42010
[So] Soffer A., Phase space analysis of non linear waves and global existence. Preprint.
[T] Tomas P., A restriction theorem for the Fourier transform. Bull. AMS, 81, 1975, 477-478. Article |  MR 50 #10681 |  Zbl 0298.42011
[V1] Vega L., Schrödinger equations : pointwise convergence to the initial data. Proc. AMS, 102, 1988, 874-878.  MR 89d:35046 |  Zbl 0654.42014
[V2] Vega L., El multiplicador de Schrödinger : la función maximal y los operadores de restricción. Tesis doctoral. Universidad Autónoma de Madrid. 1988.
[Y] Yajima K., Existence of solutions for Schrödinger Evolution Equations. Comm. Math. Phys., 110 (1987), 415-426. Article |  MR 88e:35048 |  Zbl 0638.35036
Copyright Cellule MathDoc 2018 | Crédit | Plan du site