Centre de diffusion de revues académiques mathématiques

 
 
 
 

Journées équations aux dérivées partielles

Table des matières de ce volume | Article précédent | Article suivant
S. Klainerman; Matei Machedon
On the regularity properties of non-linear wave equations
Journées équations aux dérivées partielles (1997), Exp. No. 10, 8 p., doi: 10.5802/jedp.522
Article PDF

Bibliographie

[Be] M. Beals Self-spreading and strength of singularities for solutions to semi-linear wave equations, Annals of Math 118, 1983 no1 187-214.  MR 85c:35057 |  Zbl 0522.35064
[B] J. Bourgain Fourier transform restriction phenomena for certain lattice subsets and applications to non-linear evolution equations, I, II, Geom. Funct. Analysis 3, (1993), 107-156, 202-262.  MR 95d:35160a |  Zbl 0787.35097
[G] M. Grillakis, A priori estimates and regularity of non-linear waves, Proceedings of ICM, Zurich, 1994.
[Ke] M. Keel, to appear in Comm. in PDE.
[K-P-V] K. Kenig, G. Ponce, L. Vega The Cauchy problem for the Korteveg-De Vries equation in Sobolev spaces of negative indices, Duke Math Journal 71, no 1, pp 1-21 (1994). Article |  Zbl 0787.35090
[K-M1] S. Klainerman and M. Machedon Space-time estimates for null forms and the local existence theorem, Comm. Pure Appl. Math, vol XLVI, 1221-1268 (1993).  MR 94h:35137 |  Zbl 0803.35095
[K-M2], S. Klainerman and M. Machedon On the Maxwell-Klein-Gordon equation with finite energy, Duke Math Journal, vol. 74, no. 1 (1994). Article |  MR 95f:35210 |  Zbl 0818.35123
[K-M3] S. Klainerman and M. Machedon Finite energy solutions of the Yang-Mills equations in R3+1, Annals of Math. 142, 39-119 (1995).  MR 96i:58167 |  Zbl 0827.53056
[K-M4] S. Klainerman and M. Machedon Smoothing estimates for null forms and applications, Duke Math Journal, 81, no 1, in celebration of John Nash, 99-133 (1996) Also 1994 IMRN announcement. Article |  MR 97h:35022 |  Zbl 0909.35094
[K-M5] S. Klainerman and M. Machedon with appendices by J. Bourgain and D. Tataru, Remark on the Strichartz inequality, International Math Research Notices no 5, 201-220 (1996).  MR 97g:46037 |  Zbl 0853.35062
[K-M6] S. Klainerman and M. Machedon Estimates for null forms and the spaces Hs,δ International Math Research Notices no 17, 853-865 (1996).  MR 98j:46028 |  Zbl 0909.35095
[K-M7] S. Klainerman and M. Machedon On the regularity properties of a model problem related to wave maps, accepted, Duke Math Journal. Article |  Zbl 0878.35075
[K-M8] S. Klainerman and M. Machedon On the optimal local regularity for gauge field theories, accepted, Differential and Integral Equations.  Zbl 0940.35011
[K-S] S. Klainerman, S. Selberg Remark on the optimal regularity for equations of Wave Maps type, to appear in Comm PDE.  Zbl 0884.35102
[K-T] S. Klainerman and D. Tataru, On the local regularity for Yang-Mills equations in R4 + 1, preprint.  Zbl 0924.58010
[L] H. Lindblad Counterexamples to local existence for semi-linear wave equations, Amer. J. Math, 118 (1996) no 1 1-16.  MR 97b:35124 |  Zbl 0855.35080
[S] J. Shatah Weak Solutions and development of singularities for the SU (2)σ-Model, Comm. Pure Appl. Math, vol XLI 459-469 (1988).  MR 89f:58044 |  Zbl 0686.35081
[Sch-So] W. Schlag, C Sogge Local smoothing estimates related to the circular maximal theorem. Math Res. Letters 4 (1997) no 1-15.  MR 98e:42018 |  Zbl 0877.42006
[So] C. Sogge On local existence for non-linear wave equation satisfying variable coefficient null condition, Comm PDE 18 (1993) n0o 11 1795-1821.  MR 94m:35199 |  Zbl 0792.35125
[T] D. Tataru, The Xsθ spaces and unique continuation for solutions to the semi-linear wave equation, Comm. PDE, 21 (56), 841-887 (1996).  MR 97i:35012 |  Zbl 0853.35017
Copyright Cellule MathDoc 2019 | Crédit | Plan du site