Centre de diffusion de revues académiques mathématiques

 
 
 
 

Journées équations aux dérivées partielles

Table des matières de ce volume | Article précédent
Maciej Zworski
Distribution of resonances for convex co-compact hyperbolic surfaces
Journées équations aux dérivées partielles (1997), Exp. No. 18, 9 p., doi: 10.5802/jedp.529
Article PDF | Analyses MR 98k:58236

Bibliographie

[1] Ch. Gérard and J. Sjöstrand, Semiclassical resonances generated by a closed trajectory of hyperbolic type. Comm. Math. Phys. 108 (1987), 391-421. Article |  MR 88k:58151 |  Zbl 0637.35027
[2] L. Guillopé, Sur la distribution des longeurs des géodesiques fermées d'une surface compacte à bord totalement géodesique. Duke Math. J. 53 (1986), 827-848. Article |  MR 88e:11042 |  Zbl 0611.53042
[3] L. Guillopé, Fonctions Zêta de Selberg et surfaces de géométrie finie. Advanced Studies in Pure Mathematics 21 (1992), 33-70.  MR 94d:11032 |  Zbl 0794.58044
[4] L. Guillopé and M. Zworski, Upper bounds on the number of resonances for non-compact Riemann surfaces. J. Func. Anal. 129 (1995), 364-389.  MR 96b:58116 |  Zbl 0841.58063
[5] L. Guillopé and M. Zworski, Polynomial bounds on the number of resonances for some complete spaces of constant negative curvature near infinity. Asymp. Anal. 11 (1995), 1-22.  MR 96h:58172 |  Zbl 0859.58028
[6] L. Guillopé and M. Zworski, Scattering asymptotics for Riemann surfaces. to appear in Ann. of Math.  Zbl 0898.58054
[7] B. Helffer and J. Sjöstrand, Résonances en limite semi-classique. Mémoires de la S.M.F. 114(3) (1986). Numdam |  Zbl 0631.35075
[8] M. Ikawa. On the existence of poles of the scattering for several convex bodies. Proc. Japan Acad. 64 (1988), 91-93. Article |  MR 90i:35211 |  Zbl 0704.35113
[9] S. Lalley, Renewal theorems in symbolic dynamics with applications to geodesic flows, noneuclidean tesselations and their fractal limits. Acta Math. 163 (1989), 1-55.  MR 91c:58112 |  Zbl 0701.58021
[10] R. Mazzeo and R.B. Melrose, Meromorphic extension of the resolvent on complete spaces with asymptotically constant negative curvature. J. Func. Anal. 75 (1987), 260-310.  MR 89c:58133 |  Zbl 0636.58034
[11] R. B. Melrose, Geometric Scattering Theory. Cambridge University Press, 1995.  MR 96k:35129 |  Zbl 0849.58071
[12] S.J. Patterson, The limit set of a Fuchsian group. Acta Math. 136 (1976), 241-273.  MR 56 #8841 |  Zbl 0336.30005
[13] S.J. Patterson, The Laplacian operator on a Riemann surface I, II, III. Compositio Math. 31 (1975), 83-107, 32 (1976), 71-112, and 33 (1976), 227-259. Numdam |  Zbl 0342.30011
[14] S.J. Patterson and P. Perry, Divisor of the Selberg Zeta function, I. Even dimensions. preprint, 1995.
[15] D. Ruelle, Chaotic evolution and strange attractors. Lezione Lincee, Cambridge University Press, 1989.  MR 91d:58169 |  Zbl 0683.58001
[16] J. Sjöstrand, Singularité analytiques microlocales. Astérisque 95 (1982).  MR 84m:58151 |  Zbl 0524.35007
[17] J. Sjöstrand, Geometric bounds on the density of resonances for semi-classical problems. Duke Math. J. 60 (1990), 1-57. Article |  Zbl 0702.35188
[18] J. Sjöstrand, Density of resonances for strictly convex analytic obstacles. Can. J. Math. 48(2) (1996), 437-446.  MR 97j:35117 |  Zbl 0863.35072
[19] J. Sjöstrand, A trace formula for resonances and application to semi-classical Schrödinger operators, Séminaire EDP, École Polytechnique, Novembre, 1996. Cedram
[20] J. Sjöstrand and M. Zworski, Complex scaling and the distribution of scattering poles. J. of Amer. Math. Soc. 4(4) (1991), 729-769.  MR 92g:35166 |  Zbl 0752.35046
[21] J. Sjöstrand and M. Zworski, Lower bounds on the number of scattering poles. Comm. P. D. E. 18 (1993), 847-858.  MR 94h:35198 |  Zbl 0784.35070
[22] J. Sjöstrand and M. Zworski, The complex scaling method for scattering by strictly convex obstacles. Ark. Math. 33 (1995), 135-172.  MR 96f:35127 |  Zbl 0839.35095
[23] D. Sullivan, The density at infinity of a discrete group of hyperbolic motions. Publ. IHES 50 (1979), 172-202. Numdam |  MR 81b:58031 |  Zbl 0439.30034
[24] M. Zworski, Distribution of scattering poles for scattering on the real line. J. Funct. Anal., 73(2) (1987), 277-296.  MR 88h:81223 |  Zbl 0662.34033
[25] M. Zworski, Counting scattering poles. in SPECTRAL AND SCATTERING THEORY. M. Ikawa, ed. Marcel Dekker, 1994.  MR 95i:35210 |  Zbl 0823.35139
[26] M. Zworski, Poisson formulæ for resonances, Séminaire EDP, École Polytechnique, Avril, 1997. Cedram |  MR 98j:35036 |  Zbl pre02124115
[27] M. Zworski, Dimension of the limit set and the density of resonances for convex co-compact hyperbolic surfaces, preprint, 1997.  Zbl 1016.58014
Copyright Cellule MathDoc 2019 | Crédit | Plan du site