Centre de diffusion de revues académiques mathématiques

 
 
 
 

Journées équations aux dérivées partielles

Table des matières de ce volume | Article précédent | Article suivant
Vladimir Georgiev; Atanas Stefanov; Mirko Tarulli
Strichartz Estimates for the Schrödinger Equation with small Magnetic Potential
Journées équations aux dérivées partielles (2005), Exp. No. 4, 17 p., doi: 10.5802/jedp.17
Article PDF | Analyses MR 2352773

Bibliographie

[1] S. Agmon. Spectral properties of Schrödinger operators and scattering theory. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 2(2):151–218, 1975. Numdam |  MR 397194 |  Zbl 0315.47007
[2] P. Alsholm and G. Schmidt. Spectral and scattering theory for Schrödinger operators. Arch. Rational Mech. Anal., 40:281–311, 1970/1971.  MR 279631 |  Zbl 0226.35076
[3] A. A. Balinsky, W. D. Evans, R. T. Lewis, On the number of negative eigenvalues of Schrödinger operators with an Aharonov-Bohm magnetic field. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 457 (2001), no. 2014, 2481–2489.  MR 1862664 |  Zbl 0990.81031
[4] J. A. Barcelo, A. Ruiz, and L. Vega. Weighted estimates for the Helmholtz equation and some applications. J. Funct. Anal. 150 (1997), 356–382.  MR 1479544 |  Zbl 0890.35028
[5] J. Bergh and J. Löfström, Interpolation spaces, Springer Berlin, Heidelberg, New York, 1976.  MR 482275 |  Zbl 0344.46071
[6] V. Georgiev and M. Tarulli. Scale invariant energy smoothing estimates for the Scrödinger Equation with small Magnetic Potential. Preprint Universitá di Pisa, 2005. arXiv
[7] J. Ginibre and G. Velo. Generalized Strichartz inequalities for the wave equation. J. Funct. Anal., 133(1) (1995) 50–68.  MR 1351643 |  Zbl 0849.35064
[8] L. Hörmander, The analysis of linear partial differential operators. II. Differential operators with constant coefficients. Fundamental Principles of Mathematical Sciences, 257. Springer-Verlag, Berlin, 1983.  MR 705278 |  Zbl 0521.35002
[9] A. Ionescu, C. Kenig, Well - posedness and local smoothing of solutions of Schrödinger equations preprint 2005.
[10] C. Kenig, G. Ponce, L. Vega, Oscillatory integrals and regularity of dispersive equations, Indiana Univ. Math. J., 40 (1991), 33–69.  MR 1101221 |  Zbl 0738.35022
[11] C. Kenig, G. Ponce, L. Vega, Small solutions to nonlinear Schrödinger equations., Ann. Inst. H. Poincaré Anal. Non Linéaire, 10 (1993), no. 3, 255–288. Numdam |  MR 1230709 |  Zbl 0786.35121
[12] C. Kenig, G. Ponce, L. Vega, Smoothing effects and local existence theory for the generalized nonlinear Schrödinger equations., Invent. Math., 134 (1998), no. 3, 489–545.  MR 1660933 |  Zbl 0928.35158
[13] M. Keel and T. Tao. Endpoint Strichartz estimates. Amer. J. Math., 120(5):955–980, 1998.  MR 1646048 |  Zbl 0922.35028
[14] I. Rodnianski, T. Tao, Global regularity for the Maxwell-Klein-Gordon equation with small critical Sobolev norm in high dientions. Comm. Math. Phys. 2005.  MR 2100060 |  Zbl 1106.35073
[15] A. Ruiz, L. Vega On local regularity of Schrödinger equations. Int. Math. Research Notes 1, 1993, 13 – 27 .  MR 1201747 |  Zbl 0812.35016
[16] A. Ruiz, L. Vega Local regularity of solutions to wave equations with time–dependent potentials. Duke Math. Journal 76, 1, 1994, 913 – 940. Article |  MR 1309336 |  Zbl 0826.35014
[17] G. Staffilani, D. Tataru, Strichartz estimates for a Schrödinger operator with nonsmooth coefficients. Comm. Partial Differential Equations 27 (2002), no. 7-8, 1337–1372.  MR 1924470 |  Zbl 1010.35015
[18] E. Stein, Harmonic Analysis. Princeton Mathematical Series, Princeton Univ. Press, Princeton.  Zbl 0821.42001
[19] A. Stefanov Strichartz estimates for the magnetic Schrödinger equation preprint 2004. arXiv |  Zbl 05132555
[20] M. Tarulli. Smoothing Estimates for Scalar Field with Electromagnetic Perturbation. EJDE. Vol. 2004(2004), No. 146, pp. 1-14.  Zbl 1089.35056
Copyright Cellule MathDoc 2017 | Crédit | Plan du site