Centre de diffusion de revues académiques mathématiques

 
 
 
 

Journées équations aux dérivées partielles

Table des matières de ce volume | Article précédent | Article suivant
Olivier Glass
A controllability result for the $1$-D isentropic Euler equation
Journées équations aux dérivées partielles (2005), Exp. No. 5, 22 p., doi: 10.5802/jedp.18
Article PDF | Analyses MR 2352774

Bibliographie

[1] Alber H.-D., Local existence of weak solutions to the quasilinear wave equation for large initial values. Math. Z. 190 (1985), no. 2, pp. 249–276. Article |  MR 797541 |  Zbl 0581.35049
[2] Ancona F., Bressan A., Coclite G.M., Some results on the boundary control of systems of conservation laws. Hyperbolic problems: theory, numerics, applications, pp. 255–264, Springer, Berlin, 2003.  MR 2053176 |  Zbl 1073.93029
[3] Ancona F., Coclite G.M., On the attainable set for Temple class systems with boundary controls. Preprint SISSA (2002). arXiv
[4] Ancona F., Marson A., On the attainable set for scalar nonlinear conservation laws with boundary control. SIAM J. Control Optim. 36 (1998), no. 1, pp. 290–312.  MR 1616586 |  Zbl 0919.35082
[5] Beauchard K., Local controllability of a $1$-D Schrödinger equation, J. Math. Pures Appl. 84 (2005), no. 7, pp. 851–956.  MR 2144647 |  Zbl 02228731
[6] Bressan A., Hyperbolic systems of conservation laws, the one-dimensional problem, Oxford Lecture Series in Mathematics and its Applications 20, 2000.  MR 1816648 |  Zbl 0997.35002
[7] Bressan A., Coclite G.M., On the boundary control of systems of conservation laws. SIAM J. Control Optim. 41 (2002), no. 2, 607–622  MR 1920513 |  Zbl 1026.35075
[8] Corli A., Sablé-Tougeron M., Perturbations of bounded variation of a strong shock wave. J. Differential Equations 138 (1997), no. 2, pp. 195–228.  MR 1462267 |  Zbl 0881.35071
[9] Coron J.-M., Global Asymptotic Stabilization for controllable systems without drift, Math. Control Signal Systems, 5, 1992, pp. 295-312.  MR 1164379 |  Zbl 0760.93067
[10] Coron J.-M., On the controllability of $2$-D incompressible perfect fluids, J. Math. Pures Appl., 75 (1996), no. 2, pp. 155–188.  MR 1380673 |  Zbl 0848.76013
[11] Coron J.-M. Local controllability of a $1$-D tank containing a fluid modeled by the shallow water equations. A tribute to J. L. Lions. ESAIM Control Optim. Calc. Var. 8 (2002), pp. 513–554. Numdam |  MR 1932962 |  Zbl 1071.76012
[12] Dafermos C. M., Polygonal approximations of solutions of the initial value problem for a conservation law. J. Math. Anal. Appl. 38 (1972), pp. 33–41.  MR 303068 |  Zbl 0233.35014
[13] Di Perna R. J., Global solutions to a class of nonlinear hyperbolic systems of equations. Comm. Pure Appl. Math. 26 (1973), pp. 1–28.  MR 330788 |  Zbl 0243.35068
[14] Dubois F., LeFloch P.G., Boundary conditions for nonlinear hyperbolic systems of conservation laws. J. Differential Equations 71 (1988), no. 1, pp. 93–122.  MR 922200 |  Zbl 0649.35057
[15] Glass O., Exact boundary controllability of $3\text{-}{\rm D}$ Euler equation, ESAIM Control Optim. Calc. Var. 5 (2000) pp. 1–44.  MR 1745685 |  Zbl 0940.93012
[16] Glass O., On the controllability of the Vlasov-Poisson system. J. Differential Equations 195 (2003), no. 2, pp. 332–379.  MR 2016816 |  Zbl 02032993
[17] Glass O., On the controllability of the $1$-D isentropic Euler equation, preprint.
[18] Glimm J., Solutions in the large for nonlinear hyperbolic systems of equations. Comm. Pure Appl. Math. 18 (1965), pp. 697–715.  MR 194770 |  Zbl 0141.28902
[19] Glimm J., Lax, P. D., Decay of solutions of systems of nonlinear hyperbolic conservation laws. Memoirs of the A.M.S. 101 (1970).  MR 265767 |  Zbl 0204.11304
[20] Horsin T., On the controllability of the Burgers equation. ESAIM: Control Opt. Calc. Var. 3 (1998), pp. 83-95.  MR 1612027 |  Zbl 0897.93034
[21] Lax P. D., Hyperbolic Systems of Conservation Laws. Comm. Pure Appl. Math. 10 (1957), pp. 537-566.  MR 93653 |  Zbl 0081.08803
[22] Lax P. D., Hyperbolic systems of conservation laws and the mathematical theory of shock waves. CBMS Regional Conference Series in Applied Mathematics, No. 11. SIAM, Philadelphia, 1973.  MR 350216 |  Zbl 0268.35062
[23] Li T.-T.; Rao B.-P., Exact boundary controllability for quasi-linear hyperbolic systems. SIAM J. Control Optim. 41 (2003), no. 6, pp. 1748–1755.  MR 1972532 |  Zbl 1032.35124
[24] Lions P.-L., Perthame B., Souganidis P. E., Existence and stability of entropy solutions for the hyperbolic systems of isentropic gas dynamics in Eulerian and Lagrangian coordinates. Comm. Pure Appl. Math. 49 (1996), no. 6, pp. 599–638.  MR 1383202 |  Zbl 0853.76077
[25] Majda A., Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables, Springer-Verlag, New-York, 1984.  MR 748308 |  Zbl 0537.76001
[26] Risebro, N. H., A front-tracking alternative to the random choice method. Proc. Amer. Math. Soc. 117 (1993), no. 4, pp. 1125–1139.  MR 1120511 |  Zbl 0799.35153
[27] Sablé-Tougeron M., Stabilité de la structure d’une solution de Riemann à deux grands chocs. Ann. Univ. Ferrara Sez. VII (N.S.) 44 (1998), pp. 129–172.  MR 1744132 |  Zbl 0943.35052
[28] Schochet S., Sufficient conditions for local existence via Glimm’s scheme for large BV data. J. Differential Equations 89 (1991), no. 2, 317–354.  MR 1091481 |  Zbl 0733.35072
[29] Wagner D., Equivalence of the Euler and Lagrangian equations of gas dynamics for weak solutions. J. Differential Equations 68 (1987), no. 1, pp. 118–136.  MR 885816 |  Zbl 0647.76049
Copyright Cellule MathDoc 2017 | Crédit | Plan du site