Centre de diffusion de revues académiques mathématiques

 
 
 
 

Journées équations aux dérivées partielles

Table des matières de ce volume | Article précédent | Article suivant
Oana Ivanovici
Dispersive and Strichartz estimates for the wave equation in domains with boundary
Journées équations aux dérivées partielles (2010), Exp. No. 11, 19 p., doi: 10.5802/jedp.68
Article PDF

Résumé - Abstract

In this note we consider a strictly convex domain $\Omega \subset \mathbb{R}^d$ of dimension $d\ge 2$ with smooth boundary $\partial \Omega \ne \emptyset$ and we describe the dispersive and Strichartz estimates for the wave equation with the Dirichlet boundary condition. We obtain counterexamples to the optimal Strichartz estimates of the flat case; we also discuss the some results concerning the dispersive estimates.

Bibliographie

[1] Matthew D. Blair, Hart F. Smith & Christopher D. Sogge, “Strichartz estimates for the wave equation on manifolds with boundary”, to appear in Ann.Inst.H.Poincaré, Anal.Non Liréaire Numdam |  MR 2566711 |  Zbl pre05612928
[2] Nicolas Burq, Patrick Gérard & Nicolay Tzvetkov, “Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds”, Amer. J. Math. 126 (2004) no. 3, p. 569-605  MR 2058384 |  Zbl 1067.58027
[3] Nicolas Burq, Gilles Lebeau & Fabrice Planchon, “Global existence for energy critical waves in 3-D domains”, J. Amer. Math. Soc. 21 (2008) no. 3, p. 831-845  MR 2393429 |  Zbl pre05759139
[4] E. B. Davies, “The functional calculus”, J. London Math. Soc. (2) 52 (1995) no. 1, p. 166-176  MR 1345723 |  Zbl 0858.47012
[5] Gregory Eskin, “Parametrix and propagation of singularities for the interior mixed hyperbolic problem”, J. Analyse Math. 32 (1977), p. 17-62  MR 477491 |  Zbl 0375.35037
[6] J. Ginibre & G. Velo, Generalized Strichartz inequalities for the wave equation, Partial differential operators and mathematical physics (Holzhau, 1994), Oper. Theory Adv. Appl. 78, Birkhäuser, 1995, p. 153–160  MR 1365328
[7] Daniel Grieser, “$L^{p}$ bounds for eigenfunctions and spectral projections of the Laplacian near concave boundaries. Thesis, UCLA” 1992, http://www.staff.uni-oldenburg.de/daniel.grieser/wwwpapers/diss.pdf
[8] Oana Ivanovici, “Counter example to Strichartz estimates for the wave equation in domains” 2008, to appear in Math. Annalen, arXiv:math/0805.2901 arXiv |  Zbl pre05708688
[9] Oana Ivanovici, “Counterexamples to the Strichartz estimates for the wave equation in domains II” 2009, arXiv:math/0903.0048 arXiv |  MR 2640046
[10] Oana Ivanovici & Fabrice Planchon, “Square function and heat flow estimates on domains” 2008, arXiv:math/0812.2733 arXiv
[11] L. V. Kapitanskiĭ, “Some generalizations of the Strichartz-Brenner inequality”, Algebra i Analiz 1 (1989) no. 3, p. 127-159  MR 1015129 |  Zbl 0732.35118
[12] Markus Keel & Terence Tao, “Endpoint Strichartz estimates”, Amer. J. Math. 120 (1998) no. 5, p. 955-980  MR 1646048 |  Zbl 0922.35028
[13] Gilles Lebeau, Estimation de dispersion pour les ondes dans un convexe, Journées “Équations aux Dérivées Partielles” (Evian, 2006), 2006 Cedram
[14] Hans Lindblad & Christopher D. Sogge, “On existence and scattering with minimal regularity for semilinear wave equations”, J. Funct. Anal. 130 (1995) no. 2, p. 357-426  MR 1335386 |  Zbl 0846.35085
[15] Francis Nier, “A variational formulation of Schrödinger-Poisson systems in dimension $d\le 3$”, Comm. Partial Differential Equations 18 (1993) no. 7-8, p. 1125-1147  MR 1233187 |  Zbl 0785.35086
[16] A.N. Oraevsky, “Whispering-gallery waves”, Quantum Electronics 32 (2002) no. 5, p. 377-400
[17] Hart F. Smith, “A parametrix construction for wave equations with $C^{1,1}$ coefficients”, Ann. Inst. Fourier (Grenoble) 48 (1998) no. 3, p. 797-835 Cedram |  MR 1644105 |  Zbl 0974.35068
[18] Hart F. Smith & Christopher D. Sogge, “On the critical semilinear wave equation outside convex obstacles”, J. Amer. Math. Soc. 8 (1995) no. 4, p. 879-916  MR 1308407 |  Zbl 0860.35081
[19] Hart F. Smith & Christopher D. Sogge, “On the $L^p$ norm of spectral clusters for compact manifolds with boundary”, Acta Math. 198 (2007) no. 1, p. 107-153  MR 2316270 |  Zbl 1189.58017
[20] Robert S. Strichartz, “Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations”, Duke Math. J. 44 (1977) no. 3, p. 705-714 Article |  MR 512086 |  Zbl 0372.35001
[21] Daniel Tataru, “Strichartz estimates for second order hyperbolic operators with nonsmooth coefficients. III”, J. Amer. Math. Soc. 15 (2002) no. 2, p. 419-442 (electronic)  MR 1887639 |  Zbl 0990.35027
Copyright Cellule MathDoc 2018 | Crédit | Plan du site