Centre de diffusion de revues académiques mathématiques

 
 
 
 

Journées équations aux dérivées partielles

Table des matières de ce volume | Article précédent | Article suivant
Gabriel S. Koch
Profile decompositions and applications to Navier-Stokes
Journées équations aux dérivées partielles (2010), Exp. No. 12, 13 p., doi: 10.5802/jedp.69
Article PDF

Résumé - Abstract

In this expository note, we collect some recent results concerning the applications of methods from dispersive and hyperbolic equations to the study of regularity criteria for the Navier-Stokes equations. In particular, these methods have recently been used to give an alternative approach to the $L_{3,\infty }$ Navier-Stokes regularity criterion of Escauriaza, Seregin and Šverák. The key tools are profile decompositions for bounded sequences of functions in critical spaces.

Bibliographie

[1] Hajer Bahouri, Albert Cohen, and Gabriel Koch. A general construction method for profile decompositions. in progress.
[2] Hajer Bahouri and Patrick Gérard. High frequency approximation of solutions to critical nonlinear wave equations. Amer. J. Math., 121(1):131–175, 1999.  MR 1705001 |  Zbl 0919.35089
[3] H. Brezis and J.-M. Coron. Convergence of solutions of $H$-systems or how to blow bubbles. Arch. Rational Mech. Anal., 89(1):21–56, 1985.  MR 784102 |  Zbl 0584.49024
[4] L. Caffarelli, R. Kohn, and L. Nirenberg. Partial regularity of suitable weak solutions of the Navier-Stokes equations. Comm. Pure Appl. Math., 35(6):771–831, 1982.  MR 673830 |  Zbl 0509.35067
[5] L. Escauriaza, G. A. Seregin, and V. Šverák. $L_{3,\infty }$-solutions of Navier-Stokes equations and backward uniqueness. Uspekhi Mat. Nauk, 58(2(350)):3–44, 2003.  MR 1992563 |  Zbl 1064.35134
[6] Isabelle Gallagher. Profile decomposition for solutions of the Navier-Stokes equations. Bull. Soc. Math. France, 129(2):285–316, 2001. Numdam |  MR 1871299 |  Zbl 0987.35120
[7] Isabelle Gallagher, Dragoş Iftimie, and Fabrice Planchon. Non-explosion en temps grand et stabilité de solutions globales des équations de Navier-Stokes. C. R. Math. Acad. Sci. Paris, 334(4):289–292, 2002.  MR 1891005 |  Zbl 0997.35051
[8] Isabelle Gallagher, Dragoş Iftimie, and Fabrice Planchon. Asymptotics and stability for global solutions to the Navier-Stokes equations. Ann. Inst. Fourier (Grenoble), 53(5):1387–1424, 2003. Cedram |  MR 2032938 |  Zbl 1038.35054
[9] Isabelle Gallagher, Gabriel Koch, and Fabrice Planchon. A profile decomposition approach to the ${L}^\infty _t({L}^{3}_x)$ Navier-Stokes regularity criterion. arXiv:1012.0145. arXiv
[10] Patrick Gérard. Description du défaut de compacité de l’injection de Sobolev. ESAIM Control Optim. Calc. Var., 3:213–233 (electronic), 1998. Numdam |  MR 1632171 |  Zbl 0907.46027
[11] Stéphane Jaffard. Analysis of the lack of compactness in the critical Sobolev embeddings. J. Funct. Anal., 161(2):384–396, 1999.  MR 1674639 |  Zbl 0922.46030
[12] Carlos Kenig and Gabriel Koch. An alternative approach to the Navier-Stokes equations in critical spaces. to appear in Annales de l’Institut Henri Poincaré (C) Analyse Non Linéaire (preprint: arXiv:0908.3349).
[13] Carlos E. Kenig and Frank Merle. Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case. Invent. Math., 166(3):645–675, 2006.  MR 2257393 |  Zbl 1115.35125
[14] Carlos E. Kenig and Frank Merle. Global well-posedness, scattering and blow-up for the energy-critical focusing non-linear wave equation. Acta Math., 201(2):147–212, 2008.  MR 2461508 |  Zbl 1183.35202
[15] Carlos E. Kenig and Frank Merle. Scattering for $H^{1/2}$ bounded solutions to the cubic, defocusing NLS in 3 dimensions. Trans. Amer. Math. Soc., 362(4):1937–1962, 2010.  MR 2574882 |  Zbl 1188.35180
[16] Sahbi Keraani. On the blow up phenomenon of the critical nonlinear Schrödinger equation. J. Funct. Anal., 235(1):171–192, 2006.  MR 2216444 |  Zbl 1099.35132
[17] Gabriel Koch. Profile decompositions for critical Lebesgue and Besov space embeddings. arXiv:1006.3064. arXiv
[18] O. A. Ladyženskaja. Uniqueness and smoothness of generalized solutions of Navier-Stokes equations. Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 5:169–185, 1967.  MR 236541 |  Zbl 0194.12805
[19] J. Leray. Sur le mouvement d’un liquide visqueux emplissant l’espace. Acta Math., 63:193–248, 1934.  MR 1555394 |  JFM 60.0726.05
[20] P.-L. Lions. The concentration-compactness principle in the calculus of variations. The limit case. I. Rev. Mat. Iberoamericana, 1(1):145–201, 1985.  MR 834360 |  Zbl 0704.49005
[21] J. Nečas, M. Růžička, and V. Šverák. On Leray’s self-similar solutions of the Navier-Stokes equations. Acta Math., 176(2):283–294, 1996.  Zbl 0884.35115
[22] Giovanni Prodi. Un teorema di unicità per le equazioni di Navier-Stokes. Ann. Mat. Pura Appl. (4), 48:173–182, 1959.  MR 126088 |  Zbl 0148.08202
[23] James Serrin. The initial value problem for the Navier-Stokes equations. In Nonlinear Problems (Proc. Sympos., Madison, Wis, pages 69–98. Univ. of Wisconsin Press, Madison, Wis., 1963.  MR 150444 |  Zbl 0115.08502
[24] Sergio Solimini. A note on compactness-type properties with respect to Lorentz norms of bounded subsets of a Sobolev space. Ann. Inst. H. Poincaré Anal. Non Linéaire, 12(3):319–337, 1995. Numdam |  MR 1340267 |  Zbl 0837.46025
[25] V. Šverák and W. Rusin. Minimal initial data for potential Navier-Stokes singularities. arXiv:0911.0500, 2009. arXiv
Copyright Cellule MathDoc 2018 | Crédit | Plan du site