Centre de diffusion de revues académiques mathématiques

 
 
 
 

Journées équations aux dérivées partielles

Table des matières de ce volume | Article précédent | Article suivant
Luca Fanelli
Electromagnetic Schrödinger flow: multiplier methods for dispersion
Journées équations aux dérivées partielles (2010), Exp. No. 7, 13 p., doi: 10.5802/jedp.64
Article PDF
Mots clés: electric potentials, magnetic potentials, virial identities, Schrödinger operators, spectral theory

Résumé - Abstract

We show a list of results which have been recently obtained about dispersive properties of the electromagnetic Schrödinger flow. We introduce a general philosophy, based on multiplier technique, which permits to detect the bad parts of an electromagnetic potential which can possibly affect the dispersion.

Bibliographie

[1] Barceló, J.A., Ruiz, A., and Vega, L., Some dispersive estimates for Schrödinger equations with repulsive potentials J. Funct. Anal. 236 (2006), 1–24.  MR 2227127 |  Zbl pre05037252
[2] Burq, N., Planchon, F., Stalker, J., and Tahvildar-Zadeh, S. Strichartz estimates for the wave and Schrödinger equations with potentials of critical decay, Indiana Univ. Math. J. 53(6) (2004), 1665–1680.  MR 2106340 |  Zbl 1084.35014
[3] Constantin, P., and Saut, J.-C., Local smoothing properties of dispersive equations, Journ. AMS (1988), 413–439.  MR 928265 |  Zbl 0667.35061
[4] Cycon, H.L., Froese, R., Kirsch, W., and Simon, B., Schrödinger Operators with Applications to Quantum Mechanics and Global Geometry Texts and Monographs in Physics, Springer Verlag Berlin Heidelberg New York (1987).  MR 883643 |  Zbl 0619.47005
[5] Erdoğan, M. B., Goldberg, M., and Schlag, W., Strichartz and Smoothing Estimates for Schrödinger Operators with Almost Critical Magnetic Potentials in Three and Higher Dimensions, to appear on Forum Math.  MR 2541480 |  Zbl 1181.35208
[6] Erdoğan, M. B., Goldberg, M., and Schlag, W., Strichartz and smoothing estimates for Schrodinger operators with large magnetic potentials in ${\mathbb{R}}^3$, to appear on J. European Math. Soc.  MR 2390334 |  Zbl 1152.35021
[7] D’Ancona, P., and Fanelli, L., Strichartz and smoothing estimates for dispersive equations with magnetic potentials, Comm. Part. Diff. Eqns. 33 (2008), 1082–1112.  MR 2424390 |  Zbl 1160.35363
[8] P. D’Ancona, and L. Fanelli: Smoothing estimates for the Schrödinger equation with unbounded potentials, Journ. Diff. Eq. 246 (2009), 4552–4567.  MR 2523293 |  Zbl 1173.35031
[9] P. D’Ancona, L. Fanelli, L. Vega, and N. Visciglia: Endpoint Strichartz estimates for the magnetic Schrödinger equation, J. Funct. Anal. 258 (2010), 3227–3240.  MR 2601614 |  Zbl 1188.81061
[10] Fanelli, L., Non-trapping magnetic fields and Morrey-Campanato estimates for Schrödinger operators, textitJ. Math. Anal. Appl. 357 (2009), 1–14.  MR 2526801 |  Zbl 1170.35374
[11] L. Fanelli, and A. García: Counterexamples to Strichartz estimates for the magnetic Schrödinger equation, to appear on Comm. Cont. Math.
[12] Fanelli, L., and Vega, L., Magnetic virial identities, weak dispersion and Strichartz inequalities, to appear on Math. Ann.  MR 2664570 |  Zbl 1163.35005
[13] Georgiev, V., Stefanov, A., and Tarulli, M. Smoothing - Strichartz estimates for the Schrödinger equation with small magnetic potential, Discrete Contin. Dyn. Syst. A 17 (2007), 771–786.  MR 2276474 |  Zbl 1125.35077
[14] Ginibre, J., and Velo, G., Generalized Strichartz inequalities for the wave equation, J. Funct. Anal. 133 (1995) no. 1, 50–68.  MR 1351643 |  Zbl 0849.35064
[15] Goldberg, M., Dispersive estimates for the three-dimensional schrödinger equation with rough potential, Amer. J. Math. 128 (2006), 731–750.  MR 2230923 |  Zbl 1096.35027
[16] Goldberg, M., and Schlag, W., Dispersive estimates for schrödinger operators in dimensions one and three, Comm. Math. Phys. 251 (2004), 157–178.  MR 2096737 |  Zbl 1086.81077
[17] Goldberg, M., Vega, L., and Visciglia, N., Counterexamples of Strichartz inequalities for Schrödinger equations with repulsive potentials, Int. Math Res Not., 2006 Vol. 2006: article ID 13927.  MR 2211154 |  Zbl 1102.35026
[18] Ionescu, A.D., and Kenig, C., Well-posedness and local smoothing of solutions of Schrödinger equations, Math. Res. Letters 12 (2005), 193–205.  MR 2150876 |  Zbl 1077.35108
[19] Kato, T., and Yajima, K., Some examples of smooth operators and the associated smoothing effect, Rev. Math. Phys. 1 (1989), 481–496.  MR 1061120 |  Zbl 0833.47005
[20] Keel, M., and Tao, T., Endpoint Strichartz estimates, Amer. J. Math. 120 (1998) no. 5, 955–980.  MR 1646048 |  Zbl 0922.35028
[21] Leinfelder, H., and Simader, C., Schrödinger operators with singular magnetic vector potentials, Math Z. 176 (1981), 1–19.  MR 606167 |  Zbl 0468.35038
[22] C.S. Morawetz, Time decay for the nonlinear Klein-Gordon equation, Proc. Roy. Soc. London A, 306 (1968), 291–296.  MR 234136 |  Zbl 0157.41502
[23] B. Perthame, and L. Vega, Morrey-Campanato estimates for the Helmholtz Equations, J. Func. Anal. 164 (1999), 340–355.  MR 1695559 |  Zbl 0932.35048
[24] Robbiano, L., and Zuily, C., Strichartz estimates for Schrödinger equations with variable coefficients, Mem. Soc. Math. Fr. 101-102 (2005).  MR 2193021 |  Zbl 1097.35002
[25] Rodnianski, I., and Schlag, W., Time decay for solutions of Schrödinger equations with rough and time-dependent potentials, Invent. Math. 155(3) (2004), 451–513.  MR 2038194 |  Zbl 1063.35035
[26] Ruiz, A., and Vega, L., On local regularity of Schr¨odinger equations. Int. Math. Research Notices 1, 1993, 13–27 .  MR 1201747 |  Zbl 0812.35016
[27] Sjölin, P., Regularity of solutions to the Schrödinger equations, Duke Math. J. 55 (1987), 699–715. Article |  MR 904948 |  Zbl 0631.42010
[28] Stein, E., Harmonic Analysis. Princeton University Press, Princeton, New Jersey, 1993.  MR 1232192 |  Zbl 0821.42001
[29] Strichartz, R., Restriction of Fourier transforms to quadratic surfaces and decay of solutions of wave equations, Duke Math. J. 44 (1977), 705–774. Article |  MR 512086 |  Zbl 0372.35001
[30] Vega, L., The Schrödinger equation: pointwise convergence to the initial date, Proc. AMS 102 (1988), 874–878.  MR 934859 |  Zbl 0654.42014
Copyright Cellule MathDoc 2018 | Crédit | Plan du site