Centre de diffusion de revues académiques mathématiques


Journées équations aux dérivées partielles

Table des matières de ce volume | Article précédent | Article suivant
Charles L. Fefferman; Michael I. Weinstein
Waves in Honeycomb Structures
Journées équations aux dérivées partielles (2012), Exp. No. 12, 12 p., doi: 10.5802/jedp.95
Article PDF
Class. Math.: 00X99
Mots clés: Periodic structure, Dispersion relation, Dirac point, Dirac equations, Conical point, Graphene, Nonlinear Schrödinger / Gross Pitaevskii equation

Résumé - Abstract

We review recent work of the authors on the non-relativistic Schrödinger equation with a honeycomb lattice potential, $V$. In particular, we summarize results on (i) the existence of Dirac points, conical singularities in dispersion surfaces of $H_V=-\Delta +V$ and (ii) the two-dimensional Dirac equations, as the large (but finite) time effective system of equations governing the evolution $e^{-iH_Vt}\psi _0$, for data $\psi _0$, which is spectrally localized near a Dirac point. We conclude with a formal derivation and discussion of the effective large time evolution for the nonlinear Schrödinger - Gross Pitaevskii equation for small amplitude initial conditions, $\psi _0$. The effective dynamics are governed by a nonlinear Dirac system.


[1] M. Ablowitz, C. Curtis, and Y. Zhu. On tight-binding approximations in optical lattices. Stud. Appl. Math, 129(4):362—388, 2012.  MR 2993124 |  Zbl pre06137933
[2] M.J. Ablowitz and Y. Zhu. Nonlinear waves in shallow honeycomb lattices. SIAM J. Appl. Math., 72(240–260), 2012.  MR 2888342 |  Zbl 1258.41012
[3] O. Bahat-Treidel, O. Peleg, and M. Segev. Symmetry breaking in honeycomb photonic lattices. Optics Letters, 33(2251–2253), 2008.
[4] M.V. Berry and M.R. Jeffrey. Conical Diffraction: Hamilton’s diabolical point at the heart of crystal optics. Progress in Optics. 2007.
[5] L. Erdös, B. Schlein, and H.T. Yau. Derivation of the cubic non-linear Schrödinger equation from quantum dynamics of many-body systems. Invent. Math., 167:515–614, 2007.  MR 2276262 |  Zbl 1123.35066
[6] C.L. Fefferman and M.I. Weinstein. Dynamics of wave packets in honeycomb structures and two-dimensional Dirac equations. submitted, http://arxiv.org/abs/1212.6072.
[7] C.L. Fefferman and M.I. Weinstein. Honeycomb lattice potentials and Dirac points. J. Amer. Math. Soc., 25:1169–1220, 2012.  MR 2947949 |  Zbl pre06195222
[8] V. V. Grushin. Multiparameter perturbation theory of Fredholm operators applied to Bloch functions. Mathematical Notes, 86(6):767–774, 2009.  MR 2643450 |  Zbl 1197.47025
[9] F.D.M. Haldane and S. Raghu. Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry. Phys. Rev. Lett., 100:013904, 2008.
[10] R. A. Indik and A. C. Newell. Conical refraction and nonlinearity. Optics Express, 14(22):10614–10620, 2006.
[11] P. Kuchment and O. Post. On the spectra of carbon nano-structures. Comm. Math. Phys., 275:805–826, 2007.  MR 2336365 |  Zbl 1145.81032
[12] J.V. Maloney and A.C. Newell. Nonlinear Optics. Westview Press, 2003.  Zbl 1054.78001
[13] A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, and A.K. Geim. The electronic properties of graphene. Reviews of Modern Physics, 81:109–162, 2009.
[14] K. S. Novoselov. Nobel lecture: Graphene: Materials in the flatland. Reviews of Modern Physics, 837–849, 2011.
[15] O. Peleg, G. Bartal, B. Freedman, O. Manela, M. Segev, and D.N. Christodoulides. Conical diffraction and gap solitons in honeycomb photonic lattices. Phys. Rev. Lett., 98:103901, 2007.
[16] L. P. Pitaevskii and S. Stringari. Bose Einstein Condensation. Oxford University Press, 2003.  MR 2012737 |  Zbl 1110.82002
[17] M.C. Rechtsman, J.M. Zeuner, Y. Plotnik, Y. Lumer, S. Nolte, M. Segev, and A. Szameit. Photonic Floquet topological insulators. http://arxiv.org/abs/1212.3146.
[18] P.R. Wallace. The band theory of graphite. Phys. Rev., 71:622, 1947.  Zbl 0033.14304
Copyright Cellule MathDoc 2018 | Crédit | Plan du site