Centre de diffusion de revues académiques mathématiques

 
 
 
 

Journées équations aux dérivées partielles

Table des matières de ce volume | Article précédent | Article suivant
Charles Fefferman
Formation of Singularities in Fluid Interfaces
Journées équations aux dérivées partielles (2012), Exp. No. 2, 9 p., doi: 10.5802/jedp.85
Article PDF

Bibliographie

[1] T. Alazard, N. Burq & C. Zuilly, “On the water-wave equations with surface tension”, Duke Math. J. 158 no. 3, p. 413-499  MR 2805065 |  Zbl 1258.35043
[2] D. M. Ambrose & N. Masmoudi, “The zero surface tension limit of two-dimensional water waves”, Comm. Pure Appl. Math. 58 no. 10, p. 1287-1315  MR 2162781 |  Zbl 1086.76004
[3] B. Alvarez-Samaniego & D. Lannes, “Large time existence for 3D water waves and asympotics”, Invent. Math. 171 no. 3, p. 485-541  MR 2372806 |  Zbl 1131.76012
[4] A. Bertozzi & P. Constantin, “Global regularity for vortex patches”, Comm. Pure Appl. Math. 152 no. 1, p. 19-28  MR 1207667 |  Zbl 0771.76014
[5] J. T. Beale, T. Y. Hou & J. Lowengrub, “Convergence of a boundary integral method for water waves”, SIAM J. Numer. Anal. 33 no. 5, p. 1797-1843  MR 1411850 |  Zbl 0858.76046
[6] A. Castro, D. Cordoba, C. Fefferman, F. Gancedo & J. Gomez-Serrano, “Finite time singularities for the free boundary incompressible Euler equations”, preprint  Zbl pre06220729
[7] A. Castro, D. Cordoba, C. Fefferman, F. Gancedo & J. Gomez-Serrano, “Finite time singularities for water waves with surface tension”, preprint
[8] A. Castro, D. Cordoba, C. Fefferman, F. Gancedo & M. Lopez-Fernandez, “Rayleigh-Taylor breakdown for the Muskat problem with applications to water waves”, Annals of Math. 175, p. 909-948  MR 2993754 |  Zbl 1267.76033
[9] A. Castro, D. Cordoba, C. Fefferman & F. Gancedo, “Breakdown of smoothness for the Muskat problem”, preprint
[10] A. Cordoba, D. Cordoba & F. Gancedo, “Interface evolution: Water waves in 2D”, Adv. Math. 223 no. 1, p. 120-173  Zbl 1183.35276
[11] P. Constantin, D. Cordoba, F. Gancedo & R. Strain, “On the global existence for the Muskat problem”, JEMS 15 no. 1, p. 201-227 Article |  MR 2998834 |  Zbl 1258.35002
[12] D. Cordoba, M. Fontelos, A. Mancho & J. L. Rodrigo, “Evidence of singularities for a family of contour dynamics equations”, Proc. Nat. Acad. Sci. USA 102, p. 5949-5952  MR 2141918 |  Zbl 1135.76315
[13] D. Cordoba & F. Gancedo, “Contour dynamics of incompressible 3D fluids in a porous medium with different densities”, Comm. Math. Phys. 273 no. 2, p. 445-471  MR 2318314 |  Zbl 1120.76064
[14] J. Y. Chemin, “Persistance de structures géometriques dans les fluides incompressibles bidimensionels”, Ann. École Norm. Sup. 26, p. 1-16 Numdam |  MR 1235440 |  Zbl 0779.76011
[15] R. Caflisch, S. Howison & M. Siegel, “Global existence, singular solutions and ill-posedness for the Muskat problem”, Comm. Pure Appl. Math 57, p. 1374-1411  MR 2070208 |  Zbl 1062.35089
[16] D. Christodoulou & H. Lindblad, “On the motion of the free surface of a liquid”, Comm. Pure Appl. Math. 53 no. 12, p. 1536-1602  MR 1780703 |  Zbl 1031.35116
[17] P. Constantin & M. Pugh, “Global solutions for small data to the Hele-Shaw problem”, Nonlinearity 6, p. 393-415  MR 1223740 |  Zbl 0808.35104
[18] D. Coutand & S. Shkoller, “On the finite-time splash singularity for the 3D free surface Euler equqations”, (preprint)
[19] D. Coutand & S. Shkoller, “Well-posedness of the free-surface incompressible Euler equations with or without surface tension”, J. Amer. Math. Soc. 20 no. 3, p. 829-930  MR 2291920 |  Zbl 1123.35038
[20] J. Escher & B-V. Matioc, “On the parabolicity of the Muskat problem: Well-posedness, fingering and stability results”, Z. Annal. Awend 30, p. 193-218  MR 2793001 |  Zbl 1223.35199
[21] F. Gancedo, “Existence for the $\alpha $-patch model and the $QG$ sharp front in Sobolev spaces”, Adv. Math. 217, p. 2569-2598  MR 2397460 |  Zbl 1148.35099
[22] P. Germain, N. Masmoudi & J. Shatah, “Global solutions for the gravity water waves equation in dimension 3”, Annals of Math.  Zbl 1241.35003
[23] D. Lannes, “Well-posedness of the water-waves equation”, J. Amer. Math. Soc. 18 no. 3, p. 605-654  MR 2138139 |  Zbl 1069.35056
[24] H. Lindblad, “Well-posedness for the motion of an incompressible liquid with free surface boundary”, Annals of Math. 162, p. 109-194  MR 2178961 |  Zbl 1095.35021
[25] J. Rodrigo, “On the evolution of sharp fronts for the quasigeostrophic equation”, Comm. Pure Appl. Math. 58 no. 6, p. 821-866  MR 2142632 |  Zbl 1073.35006
[26] J. Shatah & C. Zeng, “Geometry and a-priori estimates for free boundary problems of the Euler equation”, Comm. Pure Appl. Math 61 no. 5, p. 698-744  MR 2388661 |  Zbl 1174.76001
[27] S. Wu, “Almost global well-posedness of the 2D full water wave problem”, Invent. Math. 177 no. 1, p. 45-135  Zbl 1181.35205
[28] S. Wu, “Global well-posedness of the 3D full water-wave problem”, Invent. Math. 184 no. 1, p. 125-220  Zbl 1221.35304
[29] S. Wu, “Well-posedness in Sobolev spaces of the full water-wave problem in 2D”, Invent. Math. 177, p. 39-72  MR 1471885 |  Zbl 0892.76009
[30] S. Wu, “Well-posedness in Sobolev spaces of the full water-wave problem in 3D”, J. Amer. Math. Soc. 12 no. 2, p. 445-495  MR 1641609 |  Zbl 0921.76017
[31] F. Yi, “Global classical solution of Muskat free boundary problem”, J. Math. Anal. Appl. 288, p. 442-461  MR 2019452 |  Zbl 1038.35083
[32] P. Zhang & Z. Zhang, “On the free boundary problem of three-dimensional incompressible Euler equations”, Comm. Pure Appl. Math 61, p. 877-940  MR 2410409 |  Zbl 1158.35107
Copyright Cellule MathDoc 2018 | Crédit | Plan du site