Centre de diffusion de revues académiques mathématiques

 
 
 
 

Journées équations aux dérivées partielles

Table des matières de ce volume | Article précédent | Article suivant
Philippe Gravejat; Christian Hainzl; Mathieu Lewin; Éric Séré
Two Hartree-Fock models for the vacuum polarization
(Deux modèles de Hartree-Fock pour la polarisation du vide)
Journées équations aux dérivées partielles (2012), Exp. No. 4, 31 p., doi: 10.5802/jedp.87
Article PDF
Class. Math.: 35Q41, 49S05, 81T16, 81V10
Mots clés: Polarisation du vide, mer de Dirac, approximation de type Hartree-Fock, modèle de Bogoliubov-Dirac-Fock, régularisation de Pauli-Villars, renormalisation de la charge, électrodynamique quantique

Résumé - Abstract

Nous présentons des résultats récents sur la dérivation et l’analyse de deux modèles de type Hartree-Fock pour la polarisation du vide. Nous portons une attention particulière à la construction variationnelle d’un vide polarisé auto-consistent, et à la pertinence physique de notre construction non perturbative vis-à-vis de la description perturbative donnée par l’électrodynamique quantique.

Bibliographie

[1] V. Bach, J.-M. Barbaroux, B. Helffer & H. Siedentop, “On the stability of the relativistic electron-positron field”, Commun. Math. Phys. 201 (1999) no. 2, p. 445-460  MR 1682210 |  Zbl 1024.81056
[2] P.M.S. Blackett & G.P.S. Occhialini, “Some photographs of the tracks of penetrating radiation”, Proc. Roy. Soc. Lond. A 139 (1933), p. 699-726
[3] H.B.G. Casimir, “On the attraction between two perfectly conducting plates”, Proc. Kon. Nederland. Akad. Wetensch. 51 (1948) no. 7, p. 793-795  Zbl 0031.19005
[4] H.B.G. Casimir & D. Polder, “The influence of retardation on the London-van der Waals forces”, Phys. Rev. 73 (1948) no. 4, p. 360-372  Zbl 0037.28103
[5] P. Chaix & D. Iracane, “From quantum electrodynamics to mean field theory: I. The Bogoliubov-Dirac-Fock formalism”, J. Phys. B 22 (1989), p. 3791-3814
[6] P. Chaix, D. Iracane & P.-L. Lions, “From quantum electrodynamics to mean field theory: II. Variational stability of the vacuum of quantum electrodynamics in the mean-field approximation”, J. Phys. B 22 (1989), p. 3815-3828
[7] P.A.M. Dirac, “The quantum theory of the electron”, Proc. Roy. Soc. Lond. A 117 (1928), p. 610-624  JFM 54.0973.01
[8] P.A.M. Dirac, “The quantum theory of the electron. II”, Proc. Roy. Soc. Lond. A 118 (1928), p. 351-361  JFM 54.0973.02
[9] P.A.M. Dirac, “A theory of electrons and protons”, Proc. Roy. Soc. Lond. A 126 (1930), p. 360-365  JFM 56.0751.02
[10] F.J. Dyson, Advanced quantum mechanics, World Scientific, Hackensack, NJ, 2007, Translated by D. Derbes  MR 2313112 |  Zbl 1126.81003
[11] E. Engel, Relativistic density functional theory: foundations and basic formalism, in P. Schwerdtfeger, éd., Relativistic electronic structure theory, part 1. Fundamentals, Theoretical and computational chemistry 11, Elsevier, Amsterdam, 2002, p. 524-624
[12] M.J. Esteban, M. Lewin & É. Séré, “Variational methods in relativistic quantum mechanics”, Bull. Amer. Math. Soc. 45 (2008) no. 4, p. 535-593  MR 2434346 |  Zbl pre05348713
[13] V. Fock, “Näherungsmethode zur Lösung des quantenmechanischen Mehrkörperproblems”, Zts. f. Phys. 61 (1930) no. 1-2, p. 126-148  JFM 56.1313.08
[14] W.H. Furry, “A symmetry theorem in the positron theory”, Phys. Rev. 51 (1937) no. 2, p. 125-129  Zbl 0015.42506
[15] G. Gabrielse, D. Hanneke, T. Kinoshita, M. Nio & B. Odom, “New determination of the fine structure constant from the electron g value and QED”, Phys. Rev. Lett. 97 (2006) no. 3
[16] P. Gravejat, C. Hainzl, M. Lewin & É. Séré, “Construction of the Pauli-Villars-regulated Dirac vacuum in electromagnetic fields”, Preprint (2012)  MR 3035987
[17] P. Gravejat, M. Lewin & É. Séré, “Ground state and charge renormalization in a nonlinear model of relativistic atoms”, Commun. Math. Phys. 286 (2009) no. 1, p. 179-215  MR 2470929 |  Zbl 1180.81155
[18] P. Gravejat, M. Lewin & É. Séré, “Renormalization and asymptotic expansion of Dirac’s polarized vacuum”, Commun. Math. Phys. 306 (2011) no. 1, p. 1-33  MR 2819417 |  Zbl 1221.81168
[19] W. Greiner & J. Reinhardt, Quantum electrodynamics, Springer-Verlag, Berlin, 2009, Translated from the German  MR 1321143 |  Zbl 0803.00010
[20] C. Hainzl, M. Lewin & É. Séré, “Existence of a stable polarized vacuum in the Bogoliubov-Dirac-Fock approximation”, Commun. Math. Phys. 257 (2005) no. 3, p. 515-562  MR 2164942 |  Zbl 1115.81061
[21] C. Hainzl, M. Lewin & É. Séré, “Self-consistent solution for the polarized vacuum in a no-photon QED model”, J. Phys. A, Math. Gen. 38 (2005) no. 20, p. 4483-4499  MR 2147635 |  Zbl 1073.81677
[22] C. Hainzl, M. Lewin & É. Séré, “Existence of atoms and molecules in the mean-field approximation of no-photon quantum electrodynamics”, Arch. Rat. Mech. Anal. 192 (2009) no. 3, p. 453-499  MR 2505361 |  Zbl 1173.81025
[23] C. Hainzl, M. Lewin, É. Séré & J.-P. Solovej, “A minimization method for relativistic electrons in a mean-field approximation of quantum electrodynamics”, Phys. Rev. A 76 (2007) no. 5
[24] C. Hainzl, M. Lewin & J.-P. Solovej, “The mean-field approximation in quantum electrodynamics. The no-photon case”, Commun. Pure Appl. Math. 60 (2007) no. 4, p. 546-596  MR 2290710 |  Zbl 1113.81126
[25] D. Hartree, “The wave-mechanics of an atom with a non-coulomb central field. Part I”, Proc. Camb. Philos. Soc. 24 (1928) no. 1, p. 89-312  JFM 54.0966.05
[26] W. Heisenberg, “Bemerkungen zur diracschen theorie des positrons”, Zts. f. Phys. 90 (1934) no. 3, p. 209-231  Zbl 0010.04104
[27] W. Heisenberg & H. Euler, “Folgerungen aus der diracschen theorie des positrons”, Zts. f. Phys. 98 (1936) no. 11-12, p. 714-732  Zbl 0013.18503
[28] W. Hunziker & I.M. Sigal, “The quantum N-body problem”, J. Math. Phys. 41 (2000) no. 6, p. 3348-3509  MR 1768629 |  Zbl 0981.81026
[29] W.E. Lamb & R.C. Retherford, “Fine structure of the hydrogen atom by a microwave method”, Phys. Rev. 72 (1947) no. 3, p. 241-243
[30] L.D. Landau, On the quantum theory of fields. Bohr Volume, Pergamon Press, Oxford, 1955, Reprinted in Collected papers of L.D. Landau. Pergamon Press, Oxford, 1965  MR 75092
[31] L.D. Landau & I.Y. Pomeranchuk, “On point interaction in quantum electrodynamics”, Dokl. Akad. Nauk SSSR (N.S.) 102 (1955), p. 489-492  MR 73476 |  Zbl 0067.21602
[32] M. Lewin, Renormalization of Dirac’s polarized vacuum, in P. Exner, éd., Mathematical results in quantum physics, Proceedings of the QMath11 Conference, World Scientific, 2011, p. 45-59  MR 2885159 |  Zbl 1238.81101
[33] M. Lewin, A nonlinear variational problem in relativistic quantum mechanics, in Proceeding of the sixth European Congress of Mathematics, European Mathematical Society, 2013
[34] E.H. Lieb, “Variational principles for many-fermion systems”, Phys. Rev. Lett. 46 (1981) no. 7, p. 457-459  MR 601336
[35] E.H. Lieb, “Bound on the maximum negative ionization of atoms and molecules”, Phys. Rev. A 29 (1984) no. 6, p. 3018-3028
[36] L.I. Mandelshtam & I.E. Tamm, “The uncertainty relation between energy and time in nonrelativistic quantum mechanics”, J. of Phys. (USSR) 9 (1945), p. 249-254  MR 15334 |  Zbl 0060.45003
[37] G. Nenciu & G. Scharf, “On regular external fields in quantum electrodynamics”, Helv. Phys. Acta 51 (1978) no. 3, p. 412-424  MR 507904
[38] W. Pauli & M.E. Rose, “Remarks on the polarization effects in the positron theory”, Phys. Rev. 49 (1936) no. 6, p. 462-465  JFM 62.1002.04
[39] W. Pauli & F. Villars, “On the invariant regularization in relativistic quantum theory”, Rev. Modern Phys. 21 (1949), p. 434-444  MR 32504 |  Zbl 0037.12503
[40] M.E. Peskin & D.V. Schroeder, An introduction to quantum field theory, Frontiers in Physics 94, Westview Press, New-York, 1995  MR 1402248
[41] M. Reed & B. Simon, Methods of modern mathematical physics IV. Analysis of operators, Texts and Monographs in Physics, Academic Press, New-York, 1980  MR 751959 |  Zbl 0401.47001
[42] J. Sabin, “Static electron-positron pair creation in strong fields for a nonlinear Dirac model”, Preprint (2001)
[43] J. Schwinger, “Quantum electrodynamics. I. A covariant formulation”, Phys. Rev. 74 (1948) no. 10, p. 1439-1461  MR 27714 |  Zbl 0032.09404
[44] R. Serber, “Linear modifications in the Maxwell field equations”, Phys. Rev. 48 (1935) no. 1, p. 49-54  JFM 61.1250.03
[45] R. Serber, “A note on positron theory and proper energies”, Phys. Rev. 49 (1936) no. 7, p. 545-550
[46] J.-P. Solovej, “Proof of the ionization conjecture in a reduced Hartree-Fock model”, Invent. Math. 104 (1991) no. 2, p. 291-311  MR 1098611 |  Zbl 0732.35066
[47] J.-P. Solovej, “The ionization conjecture in Hartree-Fock theory”, Annals of Math. 158 (2003) no. 2, p. 509-576  MR 2018928 |  Zbl 1106.81081
[48] B. Thaller, The Dirac equation, Texts and Monographs in Physics, Springer-Verlag, Berlin, 1992  MR 1219537 |  Zbl 0765.47023
[49] E.A. Uehling, “Polarization effects in the positron theory”, Phys. Rev. 48 (1935) no. 1, p. 55-63  Zbl 0012.13605
Copyright Cellule MathDoc 2018 | Crédit | Plan du site