Centre de diffusion de revues académiques mathématiques

 
 
 
 

Journées équations aux dérivées partielles

Table des matières de ce volume | Article précédent | Article suivant
Yu Deng; Nikolay Tzvetkov; Nicola Visciglia
Invariant measures and long-time behavior for the Benjamin-Ono equation
Journées équations aux dérivées partielles (2014), Exp. No. 11, 14 p., doi: 10.5802/jedp.114
Article PDF

Résumé - Abstract

We summarize the main ideas in a series of papers ([20], [21], [22], [5]) devoted to the construction of invariant measures and to the long-time behavior of solutions of the periodic Benjamin-Ono equation.

Bibliographie

[1] L. Abdelouhab, J. Bona, M. Felland, J.-C. Saut, Nonlocal models for nonlinear, dispersive waves, Phys. D 40 (1989) 360-392.  MR 1044731 |  Zbl 0699.35227
[2] J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. II. The KdV-equation, Geom. Funct. Anal. 3 (1993), 209-262  MR 1215780 |  Zbl 0787.35098
[3] N. Burq, F. Planchon, On well-posedness for the Benjamin-Ono equation, Math. Ann. 340 (2008) 497-542.  MR 2357995 |  Zbl 1148.35074
[4] Y. Deng, Invariance of the Gibbs measure for the Benjamin-Ono equation. arxiv:1210.1542
[5] Y. Deng, N. Tzvetkov, N. Visciglia, Invariant Measures and long time behavior for the Benjamin-Ono equation III, arXiv:1405.4954
[6] J. L. Lebowitz, H. A. Rose, E. R. Speer, Statistical mechanics of the nonlinear Schrödinger equation, J. Statist. Phys. 50 (1988), 657Ð687.  MR 939505 |  Zbl 1084.82506
[7] A. Ionescu, C. Kenig, Global well-posedness of the Benjamin-Ono equation in low regularity spaces, J. Amer. Math. Soc. 20 (2007) 753-798.  MR 2291918 |  Zbl 1123.35055
[8] T. Kato, G. Ponce, Commutator estimates and the Euler and Navier-Stokes equations, Comm. Pure Appl. Math. 41 (1988) 891-907.  MR 951744 |  Zbl 0671.35066
[9] C. Kenig, K. Koenig, On the local well-posedness of the Benjamin-Ono and modified Benjamin-Ono equations, Math. Res. Lett., 10 (2003) 879-895.  MR 2025062 |  Zbl 1044.35072
[10] H. Koch, N. Tzvetkov, On the local well-posedness of the Benjamin-Ono equation in $H^s({\mathbb{R}})$, Int. Math. Res. Not. 2003, n.26, 1449-1464.  MR 1976047 |  Zbl 1039.35106
[11] Y. Matsuno, Bilinear transformation method, Academic Press, 1984.  MR 759718 |  Zbl 0552.35001
[12] H.P. McKean, E. Trubowitz, Hill’s operator and hyperelliptic function theory in the presence of infinitely many branch points, Comm. Pure Appl. Math. 29 (1976), 143-226.  MR 427731 |  Zbl 0339.34024
[13] L. Molinet, Global well-posendess in $L^2$ for the periodic Benjamin-Ono equation, Amer. J. Math. 130 (2008) 635-685.  MR 2418924 |  Zbl 1157.35001
[14] L. Molinet, D. Pilod, The Cauchy problem of the Benjamin-Ono equation in $L^2$ revisited, arXiv:1007.1545v1  MR 2970711
[15] L. Molinet, J.-C. Saut, N. Tzvetkov, Ill-posedness issues for the Benjamin-Ono and related equations, SIAM J. Math. Anal. 33 (2001), 982-988.  MR 1885293 |  Zbl 0999.35085
[16] A. Nahmod, T. Oh, L. Rey-Bellet, G. Staffilani, Invariant weighted Wiener measures and almost sure global well-posedness for the periodic derivative NLS, J. Eur. Math. Soc. 14 (2012), 1275-1330.  MR 2928851 |  Zbl 1251.35151
[17] G. Ponce, On the global well-posedness of the Benjamin-Ono equation, Diff. Int. Eq. 4 (1991) 527-542.  MR 1097916 |  Zbl 0732.35038
[18] T. Tao, Global well-posedness of the Benjamin-Ono equation in $H^1$, J. Hyperbolic Diff. Equations, 1 (2004) 27-49.  MR 2052470 |  Zbl 1055.35104
[19] N. Tzvetkov, Construction of a Gibbs measure associated to the periodic Benjamin-Ono equation, Probab. Theory Relat. Fields 146 (2010) 481-514.  MR 2574736 |  Zbl 1188.35183
[20] N. Tzvetkov, N. Visciglia, Gaussian measures associated to the higher order conservation laws of the Benjamin-Ono equation , Ann. Scient. Ec. Norm. Sup. 46 (2013) 249-299.  MR 3112200
[21] N. Tzvetkov, N. Visciglia, Invariant measures and long time behaviour for the Benjamin-Ono equation, Int. Math. Res. Not. 2013; doi: 10.1093/imrn/rnt094.  MR 3257548
[22] N. Tzvetkov, N. Visciglia, Invariant measures and long time behaviour for the Benjamin-Ono equation II, J. Math. Pures Appl. 2014; doi:10.1016/j.matpur.2014.03.009  MR 3257548
[23] P. Zhidkov, KdV and Nonlinear Schrödinger equations : qualitative theory, Lecture notes in Mathematics 1756, Springer, 2001.  Zbl 0987.35001
Copyright Cellule MathDoc 2018 | Crédit | Plan du site