Centre de diffusion de revues académiques mathématiques

 
 
 
 

Journées équations aux dérivées partielles

Table des matières de ce volume | Article précédent
San Vũ Ngọc
Microlocal Normal Forms for the Magnetic Laplacian
Journées équations aux dérivées partielles (2014), Exp. No. 12, 12 p., doi: 10.5802/jedp.115
Article PDF

Résumé - Abstract

We explore symplectic techniques to obtain long time estimates for a purely magnetic confinement in two degrees of freedom. Using pseudo-differential calculus, the same techniques lead to microlocal normal forms for the magnetic Laplacian. In the case of a strong magnetic field, we prove a reduction to a 1D semiclassical pseudo-differential operator. This can be used to derive precise asymptotic expansions for the eigenvalues at any order.

Bibliographie

[1] V. I. Arnol’d, “Remarks on the Morse theory of a divergence-free vector field, the averaging method, and the motion of a charged particle in a magnetic field”, Tr. Mat. Inst. Steklova 216 (1997) no. Din. Sist. i Smezhnye Vopr., p. 9-19  MR 1632109 |  Zbl 0923.58010
[2] L. Boutet de Monvel & F. Trèves, “On a class of pseudodifferential operators with double characteristics”, Invent. Math. 24 (1974), p. 1-34  MR 353064 |  Zbl 0281.35083
[3] L. Charles & S. Vũ Ngọc, “Spectral asymptotics via the semiclassical Birkhoff normal form”, Duke Math. J. 143 (2008) no. 3, p. 463-511  MR 2423760 |  Zbl 1154.58015
[4] C. Cheverry, “Can one hear whistler waves ?”, preprint hal-00956458, 2014
[5] S. Fournais & B. Helffer, Spectral methods in surface superconductivity, Progress in Nonlinear Differential Equations and their Applications, 77, Birkhäuser Boston Inc., Boston, MA, 2010  MR 2662319 |  Zbl 1256.35001
[6] B. Helffer & Y. A. Kordyukov, Semiclassical spectral asymptotics for a two-dimensional magnetic Schrödinger operator: the case of discrete wells, Spectral theory and geometric analysis, Contemp. Math. 535, Amer. Math. Soc., 2011, p. 55–78 Article |  MR 2560751 |  Zbl 1218.58017
[7] L. Hörmander, “A class of hypoelliptic pseudodifferential operators with double characteristics”, Math. Ann. 217 (1975) no. 2, p. 165-188  MR 377603 |  Zbl 0306.35032
[8] V. Ivrii, Microlocal analysis and precise spectral asymptotics, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 1998  MR 1631419 |  Zbl 0906.35003
[9] R. G. Littlejohn, “A guiding center Hamiltonian: a new approach”, J. Math. Phys. 20 (1979) no. 12, p. 2445-2458 Article |  MR 553507 |  Zbl 0444.70020
[10] N. Raymond & S Vũ Ngọc, “Geometry and spectrum in 2D magnetic wells”, Ann. Inst. Fourier (Grenoble) (2014), to appear
[11] J. Sjöstrand, “Parametrices for pseudodifferential operators with multiple characteristics”, Ark. Mat. 12 (1974), p. 85-130  MR 352749 |  Zbl 0317.35076
[12] J. Sjöstrand, “Semi-excited states in nondegenerate potential wells”, Asymptotic Analysis 6 (1992), p. 29-43  MR 1188076 |  Zbl 0782.35050
[13] A. Weinstein, “Symplectic manifolds and their lagrangian submanifolds”, Adv. in Math. 6 (1971), p. 329-346  MR 286137 |  Zbl 0213.48203
Copyright Cellule MathDoc 2018 | Crédit | Plan du site