Centre de diffusion de revues académiques mathématiques

 
 
 
 

Journées équations aux dérivées partielles

Table des matières de ce volume | Article précédent | Article suivant
Christophe Prange
Uniform Estimates in Homogenization: Compactness Methods and Applications
Journées équations aux dérivées partielles (2014), Exp. No. 7, 25 p., doi: 10.5802/jedp.110
Article PDF
Mots clés: Homogenization, compactness methods, boundary layers, potential theory, Green kernel, Poisson kernel, control of distributed systems

Résumé - Abstract

The purpose of this note is to explain how to use compactness to get uniform estimates in the homogenization of elliptic systems with or without oscillating boundary. Along with new results in this direction, we highlight some important applications to pointwise estimates of Green and Poisson kernels, to the homogenization of boundary layer systems and to the boundary control of composite materials.

Bibliographie

[1] F. J. Almgren, “Existence and regularity almost everywhere of solutions to elliptic variational problems among surfaces of varying topological type and singularity structure”, Ann. of Math. (2) 87 (1968), p. 321-391  MR 225243 |  Zbl 0162.24703
[2] S. N. Armstrong & Z. Shen, “Lipschitz estimates in almost-periodic homogenization”, ArXiv e-prints (2014)
[3] S. N. Armstrong & C. K. Smart, “Quantitative stochastic homogenization of convex integral functionals”, ArXiv e-prints (2014)
[4] M. Avellaneda & F.-H. Lin, “Compactness methods in the theory of homogenization”, Comm. Pure Appl. Math 40 (1987) no. 6, p. 803-847  MR 910954 |  Zbl 0632.35018
[5] M. Avellaneda & F.-H. Lin, “Counterexamples related to high-frequency oscillation of Poisson’s kernel”, Appl. Math. Optim. 15 (1987) no. 2, p. 109-119  MR 868902 |  Zbl 0662.35028
[6] M. Avellaneda & F.-H. Lin, “Homogenization of elliptic problems with $L^p$ boundary data”, Appl. Math. Optim. 15 (1987) no. 2, p. 93-107  MR 868901 |  Zbl 0644.35034
[7] M. Avellaneda & F.-H. Lin, “Compactness methods in the theory of homogenization. II. Equations in nondivergence form”, Comm. Pure Appl. Math. 42 (1989) no. 2, p. 139-172  MR 978702 |  Zbl 0645.35019
[8] M. Avellaneda & F.-H. Lin, “Homogenization of Poisson’s kernel and applications to boundary control”, J. Math. Pures Appl. (9) 68 (1989) no. 1, p. 1-29  MR 985952 |  Zbl 0617.35014
[9] M. Avellaneda & F.-H. Lin, “$L^p$ bounds on singular integrals in homogenization”, Comm. Pure Appl. Math. 44 (1991) no. 8-9, p. 897-910  MR 1127038 |  Zbl 0761.42008
[10] A. Bensoussan, J. L. Lions & G. Papanicolaou, Asymptotic analysis for periodic structures, Studies in Mathematics and its Applications 5, North-Holland Publishing Co., Amsterdam, 1978  MR 503330 |  Zbl 1229.35001
[11] E. Bombieri, “Regularity theory for almost minimal currents”, Arch. Rational Mech. Anal. 78 (1982) no. 2, p. 99-130  MR 648941 |  Zbl 0485.49024
[12] L. A. Caffarelli, “Compactness methods in free boundary problems”, Comm. Partial Differential Equations 5 (1980) no. 4, p. 427-448  MR 567780 |  Zbl 0437.35070
[13] S. Choi & I. C. Kim, “Homogenization for nonlinear PDEs in general domains with oscillatory Neumann boundary data”, J. Math. Pures Appl. (9) 102 (2014) no. 2, p. 419-448  MR 3227328
[14] D. Cioranescu & P. Donato, An Introduction to Homogenization, Oxford Lecture Series in Mathematics and its Applications, Oxford University Press, 1999  MR 1765047 |  Zbl 0939.35001
[15] E. De Giorgi, Frontiere orientate di misura minima, Seminario di Matematica della Scuola Normale Superiore di Pisa, 1960-61, Editrice Tecnico Scientifica, Pisa, 1961  MR 179651
[16] L. C. Evans, “Quasiconvexity and partial regularity in the calculus of variations”, Arch. Rational Mech. Anal. 95 (1986) no. 3, p. 227-252  MR 853966 |  Zbl 0627.49006
[17] W. M. Feldman, “Homogenization of the oscillating Dirichlet boundary condition in general domains”, J. Math. Pures Appl. (9) 101 (2014) no. 5, p. 599-622  MR 3192425 |  Zbl 1293.35109
[18] W. M. Feldman, I. Kim & P. E. Souganidis, “Quantitative Homogenization of Elliptic PDE with Random Oscillatory Boundary Data”, ArXiv e-prints (2014)
[19] J. Geng & Z. Shen, “Uniform Regularity Estimates in Parabolic Homogenization”, ArXiv e-prints (2013)
[20] J. Geng, Z. Shen & L. Song, “Uniform $W^{1,p}$ estimates for systems of linear elasticity in a periodic medium”, J. Funct. Anal. 262 (2012) no. 4, p. 1742-1758  MR 2873858 |  Zbl 1236.35035
[21] D. Gérard-Varet, “The Navier wall law at a boundary with random roughness”, Comm. Math. Phys. 286 (2009) no. 1, p. 81-110  MR 2470924 |  Zbl 1176.35127
[22] D. Gérard-Varet & N. Masmoudi, “Relevance of the slip condition for fluid flows near an irregular boundary”, Comm. Math. Phys. 295 (2010) no. 1, p. 99-137  MR 2585993 |  Zbl 1193.35130
[23] D. Gérard-Varet & N. Masmoudi, “Homogenization in polygonal domains”, J. Eur. Math. Soc. 13 (2011), p. 1477-1503  MR 2825170 |  Zbl 1228.35100
[24] D. Gérard-Varet & N. Masmoudi, “Homogenization and boundary layers”, Acta Math. 209 (2012) no. 1, p. 133-178  MR 2979511 |  Zbl 1259.35024
[25] M. Giaquinta, Multiple integrals in the calculus of variations and nonlinear elliptic systems, Annals of Mathematics Studies 105, Princeton University Press, Princeton, NJ, 1983  MR 717034 |  Zbl 0516.49003
[26] A. Gloria, S. Neukamm & F. Otto, “A regularity theory for random elliptic operators”, ArXiv e-prints (2014)  MR 3177848
[27] C. Kenig, “Weighted $H^{p}$ spaces on Lipschitz domains”, Amer. J. Math. 102 (1980) no. 1, p. 129-163  MR 556889 |  Zbl 0434.42024
[28] C. Kenig, F.-H. Lin & Z. Shen, “Homogenization of elliptic systems with Neumann boundary conditions”, J. Amer. Math. Soc. 26 (2013) no. 4, p. 901-937  MR 3073881 |  Zbl 1277.35166
[29] C. Kenig, F.-H Lin & Z. Shen, “Homogenization of Green and Neumann Functions”, to appear in Communications in Pure and Applied Mathematics, 2014
[30] C. Kenig & C. Prange, “Uniform Lipschitz Estimates in Bumpy Half-Spaces”, ArXiv e-prints (2014)
[31] C. Kenig & Z. Shen, “Homogenization of elliptic boundary value problems in Lipschitz domains”, Math. Ann. 350 (2011) no. 4, p. 867-917  MR 2818717 |  Zbl 1223.35139
[32] C. Kenig & Zhongwei Shen, “Layer potential methods for elliptic homogenization problems”, Comm. Pure Appl. Math. 64 (2011) no. 1, p. 1-44  MR 2743875 |  Zbl 1213.35063
[33] J. L. Lions, “Asymptotic problems in distributed systems”, IMA Preprint Series, 1985
[34] S. Moskow & M. Vogelius, “First-order corrections to the homogenised eigenvalues of a periodic composite medium. A convergence proof”, Proc. Roy. Soc. Edinburgh Sect. A 127 (1997) no. 6, p. 1263-1299  MR 1489436 |  Zbl 0888.35011
[35] F. Murat & L. Tartar, $H$-convergence, Topics in the mathematical modelling of composite materials, Progr. Nonlinear Differential Equations Appl. 31, Birkhäuser Boston, Boston, MA, 1997, p. 21–43  MR 1493039 |  Zbl 0920.35019
[36] C. Prange, “Asymptotic analysis of boundary layer correctors in periodic homogenization”, SIAM J. Math. Anal. 45 (2013) no. 1, p. 345-387  MR 3032981 |  Zbl 1270.35067
[37] Z. Shen, “$W^{1,p}$ estimates for elliptic homogenization problems in nonsmooth domains”, Indiana Univ. Math. J. 57 (2008) no. 5, p. 2283-2298  MR 2463969 |  Zbl 1166.35013
[38] Z. Shen, “Convergence Rates and Hölder Estimates in Almost-Periodic Homogenization of Elliptic Systems”, ArXiv e-prints (2014)
Copyright Cellule MathDoc 2018 | Crédit | Plan du site