Centre de diffusion de revues académiques mathématiques

 
 
 
 

Journées équations aux dérivées partielles

Table des matières de ce volume | Article précédent | Article suivant
Cécile Huneau
Stability in exponential time of Minkowski space-time with a space-like translation symmetry
Journées équations aux dérivées partielles (2015), Exp. No. 3, 12 p., doi: 10.5802/jedp.632
Article PDF

Résumé - Abstract

In this note, we discuss the nonlinear stability in exponential time of Minkowki space-time with a translation space-like Killing field, proved in [13]. In the presence of such a symmetry, the $3+1$ vacuum Einstein equations reduce to the $2+1$ Einstein equations with a scalar field. We work in generalized wave coordinates. In this gauge Einstein equations can be written as a system of quasilinear quadratic wave equations. The main difficulty in [13] is due to the decay in $\frac{1}{\sqrt{t}}$ of free solutions to the wave equation in $2$ dimensions, which is weaker than in $3$ dimensions. As in [21], we have to rely on the particular structure of Einstein equations in wave coordinates. We also have to carefully chose an approximate solution with a non trivial behaviour at space-like infinity to enforce convergence to Minkowski space-time at time-like infinity. This article appears under the same form in the proceedings of the Laurent Schwartz seminar.

Bibliographie

[1] S. Alinhac, “The null condition for quasilinear wave equations in two space dimensions I”, Invent. Math. 145 (2001) no. 3, p. 597-618 Article |  MR 1856402 |  Zbl 1112.35341
[2] S. Alinhac, “An example of blowup at infinity for a quasilinear wave equation”, Astérisque (2003) no. 284, p. 1-91, Autour de l’analyse microlocale  MR 2003417 |  Zbl 1053.35097
[3] A. Ashtekar, J. Bičák & B. G. Schmidt, “Asymptotic structure of symmetry-reduced general relativity”, Phys. Rev. D (3) 55 (1997) no. 2, p. 669-686 Article |  MR 1435250
[4] R. Bartnik & J. Isenberg, The constraint equations, The Einstein equations and the large scale behavior of gravitational fields, Birkhäuser, Basel, 2004, p. 1–38  MR 2098912 |  Zbl 1073.83009
[5] G. Beck, “Zur Theorie binärer Gravitationsfelder”, Zeitschrift für Physik 33 (1925) no. 14, p. 713-728  JFM 51.0712.07
[6] B. K. Berger, P. T. Chruściel & V. Moncrief, “On “asymptotically flat” space-times with $G_2$-invariant Cauchy surfaces”, Ann. Physics 237 (1995) no. 2, p. 322-354 Article |  MR 1314228 |  Zbl 0967.83507
[7] Y. Choquet-Bruhat & R. Geroch, “Global aspects of the Cauchy problem in general relativity”, Comm. Math. Phys. 14 (1969), p. 329-335  MR 250640 |  Zbl 0182.59901
[8] Y. Choquet-Bruhat & V. Moncrief, Nonlinear stability of an expanding universe with the $S^1$ isometry group, Partial differential equations and mathematical physics (Tokyo, 2001), Progr. Nonlinear Differential Equations Appl. 52, Birkhäuser Boston, Boston, MA, 2003, p. 57–71  MR 1957625 |  Zbl 1062.35149
[9] D. Christodoulou & S. Klainerman, The global nonlinear stability of the Minkowski space, Princeton Mathematical Series 41, Princeton University Press, Princeton, NJ, 1993  MR 1316662 |  Zbl 0827.53055
[10] P. Godin, “Lifespan of solutions of semilinear wave equations in two space dimensions”, Comm. Partial Differential Equations 18 (1993) no. 5-6, p. 895-916 Article |  MR 1218523 |  Zbl 0813.35055
[11] A. Hoshiga, “The existence of global solutions to systems of quasilinear wave equations with quadratic nonlinearities in 2-dimensional space”, Funkcial. Ekvac. 49 (2006) no. 3, p. 357-384 Article |  MR 2297944 |  Zbl 1149.35383
[12] Céline Huneau, “Constraint equations for 3 + 1 vacuum Einstein equations with a translational space-like Killing field in the asymptotically flat case II”, http://arxiv.org/abs/1410.6061, 2014
[13] Céline Huneau, “Stability in exponential time of Minkowski Space-time with a translation space-like Killing field”, http://arxiv.org/abs/1410.6068, 2014
[14] F. John, “Blow-up for quasilinear wave equations in three space dimensions”, Comm. Pure Appl. Math. 34 (1981) no. 1, p. 29-51 Article |  MR 600571 |  Zbl 0453.35060
[15] S. Klainerman, “Uniform decay estimates and the Lorentz invariance of the classical wave equation”, Comm. Pure Appl. Math. 38 (1985) no. 3, p. 321-332 Article |  MR 784477 |  Zbl 0635.35059
[16] S. Klainerman, The null condition and global existence to nonlinear wave equations, Nonlinear systems of partial differential equations in applied mathematics, Part 1 (Santa Fe, N.M., 1984), Lectures in Appl. Math. 23, Amer. Math. Soc., Providence, RI, 1986, p. 293–326  MR 837683 |  Zbl 0599.35105
[17] H. Kubo & K. Kubota, “Scattering for systems of semilinear wave equations with different speeds of propagation”, Adv. Differential Equations 7 (2002) no. 4, p. 441-468  MR 1869119 |  Zbl 1223.35232
[18] H. Lindblad, “Global solutions of nonlinear wave equations”, Comm. Pure Appl. Math. 45 (1992) no. 9, p. 1063-1096 Article |  MR 1177476 |  Zbl 0840.35065
[19] H. Lindblad, “Global solutions of quasilinear wave equations”, Amer. J. Math. 130 (2008) no. 1, p. 115-157 Article |  MR 2382144 |  Zbl 1144.35035
[20] H. Lindblad & I. Rodnianski, “The weak null condition for Einstein’s equations”, C. R. Math. Acad. Sci. Paris 336 (2003) no. 11, p. 901-906 Article |  MR 1994592 |  Zbl 1045.35101
[21] H. Lindblad & I. Rodnianski, “The global stability of Minkowski space-time in harmonic gauge”, Ann. of Math. (2) 171 (2010) no. 3, p. 1401-1477 Article |  MR 2680391 |  Zbl 1192.53066
[22] R. M. Wald, General relativity, University of Chicago Press, Chicago, IL, 1984 Article |  MR 757180 |  Zbl 0549.53001
Copyright Cellule MathDoc 2018 | Crédit | Plan du site