Centre de diffusion de revues académiques mathématiques

 
 
 
 

Journées équations aux dérivées partielles

Table des matières de ce volume | Article précédent | Article suivant
Herbert Koch
Global well-posedness and scattering for small data for the 2D and 3D KP-II Cauchy problem
Journées équations aux dérivées partielles (2015), Exp. No. 4, 9 p., doi: 10.5802/jedp.633
Article PDF
Mots clés: Kadomtsev-Petviashvili, Galilean transform, Bilinear estimate

Résumé - Abstract

We discuss global well-posedness for the Kadomtsev-Petviashvili II in two and three space dimensions with small data. The crucial points are new bilinear estimates and the definition of the function spaces. As by-product we obtain that all solutions to small initial data scatter as $t \rightarrow \pm \infty $.

Bibliographie

[1] Jean Bourgain, “On the Cauchy problem for the Kadomtsev-Petviashvili equation”, Geom. Funct. Anal. 3 (1993) no. 4, p. 315-341 Article |  MR 1223434 |  Zbl 0787.35086
[2] Martin Hadac, On the local well-posedness of the Kadomtsev-Petviashvili II equation., Ph. D. Thesis, Universität Dortmund, 2007  Zbl 1200.35258
[3] Martin Hadac, “Well-posedness for the Kadomtsev-Petviashvili II equation and generalisations”, Trans. Amer. Math. Soc. 360 (2008) no. 12, p. 6555-6572 Article |  MR 2434299 |  Zbl 1157.35094
[4] Martin Hadac, Sebastian Herr & Herbert Koch, “Well-posedness and scattering for the KP-II equation in a critical space”, Ann. Inst. H. Poincaré Anal. Non Linéaire 26 (2009) no. 3, p. 917-941 Numdam |  MR 2526409 |  Zbl 1169.35372
[5] Martin Hadac, Sebastian Herr & Herbert Koch, “Erratum to “Well-posedness and scattering for the KP-II equation in a critical space””, Ann. Inst. H. Poincaré Anal. Non Linéaire 27 (2010) no. 3, p. 971-972 Article |  MR 2629889 |  Zbl 1188.35162
[6] Pedro Isaza, Juan López & Jorge Mejía, “The Cauchy problem for the Kadomtsev-Petviashvili (KPII) equation in three space dimensions”, Comm. Partial Differential Equations 32 (2007) no. 4-6, p. 611-641 Article |  MR 2334825 |  Zbl 1123.35058
[7] Pedro Isaza & Jorge Mejía, “Local and global Cauchy problems for the Kadomtsev-Petviashvili (KP-II) equation in Sobolev spaces of negative indices”, Comm. Partial Differential Equations 26 (2001) no. 5-6, p. 1027-1054 Article |  MR 1843294 |  Zbl 0993.35080
[8] Markus Keel & Terence Tao, “Endpoint Strichartz estimates”, Amer. J. Math. 120 (1998) no. 5, p. 955-980  MR 1646048 |  Zbl 0922.35028
[9] Christian Klein & Jean-Claude Saut, “Numerical study of blow up and stability of solutions of generalized Kadomtsev-Petviashvili equations”, J. Nonlinear Sci. 22 (2012) no. 5, p. 763-811 Article |  MR 2982052 |  Zbl 1253.35150
[10] Herbert Koch & Daniel Tataru, “Dispersive estimates for principally normal pseudodifferential operators”, Comm. Pure Appl. Math. 58 (2005) no. 2, p. 217-284 Article |  MR 2094851 |  Zbl 1078.35143
[11] Herbert Koch, Daniel Tataru & Monica Vişan, “Dispersive Equations and Nonlinear Waves”, (2014)
[12] D. Lépingle, “La variation d’ordre $p$ des semi-martingales”, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 36 (1976) no. 4, p. 295-316  MR 420837 |  Zbl 0325.60047
[13] Terry J. Lyons, “Differential equations driven by rough signals”, Rev. Mat. Iberoamericana 14 (1998) no. 2, p. 215-310 Article |  MR 1654527 |  Zbl 0923.34056
[14] H. Takaoka & N. Tzvetkov, “On the local regularity of the Kadomtsev-Petviashvili-II equation”, Internat. Math. Res. Notices (2001) no. 2, p. 77-114 Article |  MR 1810481 |  Zbl 0977.35126
[15] Hideo Takaoka, “Well-posedness for the Kadomtsev-Petviashvili II equation”, Adv. Differential Equations 5 (2000) no. 10-12, p. 1421-1443  MR 1785680 |  Zbl 0994.35108
[16] Nickolay Tzvetkov, “On the Cauchy problem for Kadomtsev-Petviashvili equation”, Comm. Partial Differential Equations 24 (1999) no. 7-8, p. 1367-1397 Article |  MR 1697491 |  Zbl 0934.35161
Copyright Cellule MathDoc 2018 | Crédit | Plan du site