Centre de diffusion de revues académiques mathématiques

 
 
 
 

Journées équations aux dérivées partielles

Table des matières de ce volume | Article précédent | Article suivant
Jean-Marie Mirebeau
Numerical resolution of Euler equations through semi-discrete optimal transport
Journées équations aux dérivées partielles (2015), Exp. No. 7, 16 p., doi: 10.5802/jedp.636
Article PDF

Résumé - Abstract

Geodesics along the group of volume preserving diffeomorphisms are solutions to Euler equations of inviscid incompressible fluids, as observed by Arnold [4]. On the other hand, the projection onto volume preserving maps amounts to an optimal transport problem, as follows from the generalized polar decomposition of Brenier [14].

We present, in the first section, the framework of semi-discrete optimal transport, initially developed for the study of generalized solutions to optimal transport [1] and now regarded as an efficient approach to computational optimal transport. In a second and largely independent section, we present numerical approaches for Euler equations seen as a boundary value problem [16, 7, 33]: knowing the initial and final positions of some fluid particles, reconstruct intermediate fluid states. Depending on the data, we either recover a classical solution to Euler equations, or a generalized flow [15] for which the fluid particles motion is non-deterministic, as predicted by [39].

Bibliographie

[1] R Abgrall, “Construction of Simple, Stable, and Convergent High Order Schemes for Steady First Order Hamilton–Jacobi Equations”, SIAM Journal on Scientific Computing 31 (2009) no. 4, p. 2419-2446  MR 2520283 |  Zbl 1197.65167
[2] N E Aguilera & P Morin, “On Convex Functions and the Finite Element Method”, SIAM Journal on Numerical Analysis 47 (2009) no. 4, p. 3139-3157  MR 2551161 |  Zbl 1204.65076
[3] L Ambrosio & A Figalli, “On the regularity of the pressure field of Brenier’s weak solutions to incompressible Euler equations”, Calculus of Variations and Partial Differential Equations 31 (2007) no. 4, p. 497-509  MR 2372903 |  Zbl 1138.49031
[4] V Arnold, “Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l’hydrodynamique des fluides parfaits”, Annales de l’institut Fourier 16 (1966) no. 1, p. 319-361 Cedram |  MR 202082 |  Zbl 0148.45301
[5] F Aurenhammer, F Hoffmann & B Aronov, “Minkowski-Type Theorems and Least-Squares Clustering”, Algorithmica 20 (1998) no. 1, p. 61-76  MR 1483422 |  Zbl 0895.68135
[6] J D Benamou, Y Brenier & K Guittet, “The Monge-Kantorovitch mass transfer and its computational fluid mechanics formulation”, International Journal for Numerical Methods in Fluids 40 (2002) no. 1-2, p. 21-30  MR 1928314 |  Zbl 1058.76586
[7] J D Benamou, G Carlier, M Cuturi, G Peyré & L Nenna, Iterative Bregman projections for regularized transportation problems, Sci. Comp, 2015  MR 3340204
[8] J-D Benamou, F Collino & J-M Mirebeau, “Monotone and Consistent discretization of the Monge-Ampere operator”, Mathematics of computation (2015)
[9] J-D Benamou, B D Froese & A M Oberman, “Two numerical methods for the elliptic Monge-Ampere equation”, M2AN. Mathematical Modelling and Numerical Analysis 44 (2010) no. 4, p. 737-758 Numdam |  MR 2683581 |  Zbl 1192.65138
[10] J-D Benamou, B D Froese & A M Oberman, “Numerical solution of the Optimal Transportation problem using the Monge–Ampère equation”, Journal of Computational Physics 260 (2014), p. 107-126  MR 3151832
[11] M Bernot, A Figalli & F Santambrogio, “Generalized solutions for the Euler equations in one and two dimensions”, Journal de Mathématiques Pures et Appliquées 91 (2009) no. 2, p. 137-155  MR 2498752 |  Zbl 1170.35078
[12] Y Brenier, A combinatorial algorithm for the Euler equations of incompressible flows, in Proceedings of the Eighth International Conference on Computing Methods in Applied Sciences and Engineering (Versailles, 1987), 1989, p. 325-332  MR 1035755 |  Zbl 0687.76016
[13] Y Brenier, “The least action principle and the related concept of generalized flows for incompressible perfect fluids”, Journal of the American Mathematical Society 2 (1989) no. 2, p. 225-255  MR 969419 |  Zbl 0697.76030
[14] Y Brenier, “Polar factorization and monotone rearrangement of vector-valued functions”, Communications on Pure and Applied Mathematics 44 (1991) no. 4, p. 375-417  MR 1100809 |  Zbl 0738.46011
[15] Y Brenier, “The dual least action principle for an ideal, incompressible fluid ”, Archive for rational mechanics and analysis (1993)
[16] Y Brenier, “Generalized solutions and hydrostatic approximation of the Euler equations”, Physica D: Nonlinear Phenomena (2008)  MR 2449787 |  Zbl 1143.76386
[17] M Bruveris & François X Vialard, “On Completeness of Groups of Diffeomorphisms”, http://arxiv.org/abs/1403.2089, 2014
[18] A Carverhill & F J Pedit, “Global solutions of the Navier-Stokes equation with strong viscosity”, Annals of Global Analysis and Geometry 10 (1992) no. 3, p. 255-261  MR 1186014 |  Zbl 0766.58011
[19] CGAL, http://www.cgal.org/
[20] P M M De Castro, Q Merigot & B Thibert, Intersection of paraboloids and application to Minkowski-type problems, Computational geometry (SoCG’14), ACM, New York, 2014, p. 308–317  MR 3382311
[21] F de Goes, K Breeden, V Ostromoukhov & M Desbrun, “Blue noise through optimal transport”, ACM Transactions on Graphics (TOG) 31 (2012) no. 6
[22] F de Goes, C Wallez, J Huang, U Zhejiang & D Pavlov, “Power Particles: An incompressible fluid solver based on power diagrams”, geometry.caltech.edu, 2015
[23] C De Lellis & L Székelyhidi Jr, “The Euler equations as a differential inclusion”, Annals of mathematics (2009)
[24] L Euler, Theoria Motus Corporum Solidorum Seu Rigidorum, 1765
[25] A Figalli & S Daneri, “Variational models for the incompressible Euler equations”, HCDTE Lecture Notes, Part II (2012)  MR 3340994
[26] B D Froese & A M Oberman, “Convergent Finite Difference Solvers for Viscosity Solutions of the Elliptic Monge–Ampère Equation in Dimensions Two and Higher”, SIAM Journal on Numerical Analysis 49 (2011) no. 4, p. 1692-1714  MR 2831067 |  Zbl 1255.65195
[27] L V Kantorovich, Kantorovich: On the transfer of masses, Dokl. Akad. Nauk. SSSR, 1942
[28] H-J Kuo & N S Trudinger, “Discrete Methods for Fully Nonlinear Elliptic Equations”, SIAM Journal on Numerical Analysis 29 (1992) no. 1, p. 123-135  MR 1149088 |  Zbl 0745.65058
[29] B Lévy, “A numerical algorithm for $L_2$ semi-discrete optimal transport in 3D”, http://arxiv.org/abs/1409.1279v1, 2014
[30] G Loeper & F Rapetti, “Numerical solution of the Monge-Ampère equation by a Newton’s algorithm”, Comptes Rendus Mathématique. Académie des Sciences. Paris 340 (2005) no. 4, p. 319-324  MR 2121899 |  Zbl 1067.65119
[31] X-N Ma, N S Trudinger & X-J Wang, “Regularity of Potential Functions of the Optimal Transportation Problem”, Archive for rational mechanics and analysis 177 (2005) no. 2, p. 151-183  MR 2188047 |  Zbl 1072.49035
[32] Q Merigot, “A Multiscale Approach to Optimal Transport”, Computer Graphics Forum 30 (2011) no. 5, p. 1583-1592
[33] Q Merigot & J-M Mirebeau, “Minimal geodesics along volume preserving maps, through semi-discrete optimal transport”, http://arxiv.org/abs/1505.03306, 2015
[34] Q Merigot & E Oudet, “Handling convexity-like constraints in variational problems”, SIAM Journal on Numerical Analysis 52 (2014) no. 5, p. 2466-2487  MR 3268615
[35] J-M Mirebeau, “Adaptive, anisotropic and hierarchical cones of discrete convex functions”, Numerische Mathematik (2015), p. 1-47
[36] A M Oberman & Y Ruan, “An efficient linear programming method for Optimal Transportation”, http://arxiv.org/abs/1509.03668, 2015
[37] V I Oliker & L D Prussner, “On the numerical solution of the equation $\frac{{\partial ^2 z}}{{\partial x^2 }}\frac{{\partial ^2 z}}{{\partial y^2 }} - \left( {\frac{{\partial ^2 z}}{{\partial x\partial y}}} \right)^2 = f$ and its discretizations, I”, Numerische Mathematik 54 (1989) no. 3, p. 271-293  MR 971703 |  Zbl 0659.65116
[38] B Schmitzer, A sparse algorithm for dense optimal transport, Scale Space and Variational Methods in Computer Vision, Springer International Publishing, 2015, p. 629–641
[39] A I Shnirelman, “Generalized fluid flows, their approximation and applications”, Geometric and Functional Analysis 4 (1994) no. 5, p. 586-620  MR 1296569 |  Zbl 0851.76003
[40] C Villani, Optimal transport: Old and new, Springer-Verlag, Berlin, 2009 Article |  MR 2459454 |  Zbl 1156.53003
Copyright Cellule MathDoc 2018 | Crédit | Plan du site