Centre de diffusion de revues académiques mathématiques

 
 
 
 

Journées équations aux dérivées partielles

Table des matières de ce volume | Article précédent | Article suivant
Christopher D. Sogge
Problems related to the concentration of eigenfunctions
Journées équations aux dérivées partielles (2015), Exp. No. 9, 11 p., doi: 10.5802/jedp.638
Article PDF
Class. Math.: 58J51, 35A99, 42B37
Mots clés: Eigenfunctions, Kakeya-Nikodym averages

Résumé - Abstract

We survey recent results related to the concentration of eigenfunctions. We also prove some new results concerning ball-concentration, as well as showing that eigenfunctions saturating lower bounds for $L^1$-norms must also, in a measure theoretical sense, have extreme concentration near a geodesic.

Bibliographie

[1] P. Bérard, “On the wave equation on a compact Riemannian manifold without conjugate points”, Math. Z. 155 (1977) no. 3, p. 249-276  MR 455055 |  Zbl 0341.35052
[2] M. D. Blair & C. D. Sogge, “Concerning Topogonov’s Theorem and logarithmic improvement of estimates of eigenfunctions”, preprint
[3] M. D. Blair & C. D. Sogge, “Refined and microlocal Kakeya-Nikodym bounds of eigenfunctions in higher dimensions”, preprint
[4] M. D. Blair & C. D. Sogge, “On Kakeya–Nikodym averages, $L^p$-norms and lower bounds for nodal sets of eigenfunctions in higher dimensions”, J. Eur. Math. Soc. (JEMS) 17 (2015) no. 10, p. 2513-2543  MR 3420515
[5] M. D. Blair & C. D. Sogge, “Refined and microlocal Kakeya-Nikodym bounds for eigenfunctions in two dimensions”, Anal. PDE 8 (2015) no. 3, p. 747-764 Article |  MR 3353830
[6] J. Bourgain, Geodesic restrictions and $L^p$-estimates for eigenfunctions of Riemannian surfaces, Linear and complex analysis, Amer. Math. Soc. Transl. Ser. 2 226, Amer. Math. Soc., Providence, RI, 2009, p. 27–35  MR 2500507 |  Zbl 1189.58015
[7] N. Burq, P. Gérard & N. Tzvetkov, “Restrictions of the Laplace-Beltrami eigenfunctions to submanifolds”, Duke Math. J. 138 (2007) no. 3, p. 445-486 Article |  MR 2322684 |  Zbl 1131.35053
[8] X. Chen & C. D. Sogge, “A few endpoint geodesic restriction estimates for eigenfunctions”, Comm. Math. Phys. 329 (2014) no. 2, p. 435-459 Article |  MR 3210140 |  Zbl 1293.58011
[9] T. H. Colding & W. P. Minicozzi, “Lower bounds for nodal sets of eigenfunctions”, Comm. Math. Phys. 306 (2011) no. 3, p. 777-784 Article |  MR 2825508 |  Zbl 1238.58020
[10] Y. Colin de Verdière, “Ergodicité et fonctions propres du laplacien”, Comm. Math. Phys. 102 (1985) no. 3, p. 497-502  MR 818831 |  Zbl 0592.58050
[11] X. Han, “Small scale quantum ergodicity on negatively curved manifolds”, http://arxiv.org/abs/1410.3911, 2014  MR 3403398
[12] A. Hassell & M. Tacy, “Improvement of eigenfunction estimates on manifolds of nonpositive curvature”, Forum Math. 27 (2015) no. 3, p. 1435-1451  MR 3341481
[13] H. Hezari & G. Rivière, “$L^p$ norms, nodal sets, and quantum ergodicity”, http://arxiv.org/abs/1411.4078, 2014
[14] H. Hezari & C. D. Sogge, “A natural lower bound for the size of nodal sets”, Anal. PDE 5 (2012) no. 5, p. 1133-1137 Article |  MR 3022851
[15] S. Lester & Z. Rudnick, “Small scale equidistribution of eigenfunctions on the torus”, http://arxiv.org/abs/1508.01074
[16] Y. G. Safarov, “Asymptotics of a spectral function of a positive elliptic operator without a nontrapping condition”, Funktsional. Anal. i Prilozhen. 22 (1988) no. 3, p. 53-65, 96  MR 961761 |  Zbl 0679.35074
[17] A. I. Šnirelʼman, “Ergodic properties of eigenfunctions”, Uspehi Mat. Nauk 29 (1974) no. 6(180), p. 181-182  MR 402834 |  Zbl 0324.58020
[18] C. D. Sogge, “Localized $L^p$-estimates of eigenfunctions: A note on an article of Hezari and Rivière”, http://arxiv.org/abs/1503.07238  MR 3439690
[19] C. D. Sogge, “Oscillatory integrals and spherical harmonics”, Duke Math. J. 53 (1986) no. 1, p. 43-65 Article |  MR 835795 |  Zbl 0636.42018
[20] C. D. Sogge, “Concerning the $L^p$ norm of spectral clusters for second-order elliptic operators on compact manifolds”, J. Funct. Anal. 77 (1988) no. 1, p. 123-138 Article |  MR 930395 |  Zbl 0641.46011
[21] C. D. Sogge, Fourier integrals in classical analysis, Cambridge Tracts in Mathematics 105, Cambridge University Press, Cambridge, 1993 Article |  MR 1205579 |  Zbl 0783.35001
[22] C. D. Sogge, “Kakeya-Nikodym averages and $L^p$-norms of eigenfunctions”, Tohoku Math. J. (2) 63 (2011) no. 4, p. 519-538 Article |  MR 2872954 |  Zbl 1234.35156
[23] C. D. Sogge, Hangzhou lectures on eigenfunctions of the Laplacian, Annals of Mathematics Studies 188, Princeton University Press, Princeton, NJ, 2014 Article |  MR 3186367
[24] C. D. Sogge, J. A. Toth & S. Zelditch, “About the blowup of quasimodes on Riemannian manifolds”, J. Geom. Anal. 21 (2011) no. 1, p. 150-173 Article |  MR 2755680 |  Zbl 1214.58012
[25] C. D. Sogge & S. Zelditch, “Focal points and sup-norms of eigenfunctions”, Rev. Mat. Iberoamericana, to appear.
[26] C. D. Sogge & S. Zelditch, “Focal points and sup-norms of eigenfunctions manifolds II: the two-dimensional case”, Rev. Mat. Iberoamericana, to appear.
[27] C. D. Sogge & S. Zelditch, “Riemannian manifolds with maximal eigenfunction growth”, Duke Math. J. 114 (2002) no. 3, p. 387-437 Article |  MR 1924569 |  Zbl 1018.58010
[28] C. D. Sogge & S. Zelditch, “Lower bounds on the Hausdorff measure of nodal sets”, Math. Res. Lett. 18 (2011) no. 1, p. 25-37 Article |  MR 2770580 |  Zbl 1242.58017
[29] C. D. Sogge & S. Zelditch, “Lower bounds on the Hausdorff measure of nodal sets II”, Math. Res. Lett. 19 (2012) no. 6, p. 1361-1364 Article |  MR 3091613 |  Zbl 1283.58020
[30] C. D. Sogge & S. Zelditch, On eigenfunction restriction estimates and $L^4$-bounds for compact surfaces with nonpositive curvature, Advances in analysis: the legacy of Elias M. Stein, Princeton Math. Ser. 50, Princeton Univ. Press, Princeton, NJ, 2014, p. 447–461  MR 3329861
[31] S. Zelditch, “Uniform distribution of eigenfunctions on compact hyperbolic surfaces”, Duke Math. J. 55 (1987) no. 4, p. 919-941 Article |  MR 916129 |  Zbl 0643.58029
[32] S. Zelditch, “On the rate of quantum ergodicity. I. Upper bounds”, Comm. Math. Phys. 160 (1994) no. 1, p. 81-92  MR 1262192 |  Zbl 0788.58043
Copyright Cellule MathDoc 2018 | Crédit | Plan du site