Centre de diffusion de revues académiques mathématiques


Journées équations aux dérivées partielles

Table des matières de ce volume | Article précédent | Article suivant
Cristina Benea; Camil Muscalu
Mixed-norm estimates for paraproducts
Journées équations aux dérivées partielles (2016), Exp. No. 2, 10 p., doi: 10.5802/jedp.643
Article PDF

Résumé - Abstract

We present a new approach to the study of singular multi-parameter multilinear Fourier multipliers via multiple vector-valued inequalities. This summarizes some of our results from [1] and [2]. The main example is the bi-parameter paraproduct $\Pi \otimes \Pi $, for which we prove estimates within the whole range of admissible Lebesgue estimates.


[1] Cristina Benea & Camil Muscalu, “Multiple Vector Valued Inequalities via the Helicoidal Method”, http://arxiv.org/pdf/1511.04948v1.pdf, 2015
[2] Cristina Benea & Camil Muscalu, “Quasi-Banach Valued Inequalities via the Helicoidal method”, https://arxiv.org/pdf/1609.01090v1.pdf, 2016
[3] Frédéric Bernicot, “Local estimates and global continuities in Lebesgue spaces for bilinear operators”, Anal. PDE 1 (2008) no. 1, p. 1-27 Article
[4] Lennart Carleson, “On convergence and growth of partial sums of Fourier series”, Acta. Math. (1966), p. 135-157
[5] R. Coifman & Y. Meyer, Wavelets, Calderón-Zygmund Operators and Multilinear Operators, Cambridge University Press, 1997
[6] Francesco Di Plinio & Yumeng Ou, “Banach-valued multilinear singular integrals”, http://arxiv.org/abs/1506.05827, Online; accessed June 2016, 2015
[7] Charles Fefferman, “Pointwise convergence of Fourier Series”, The Annals of Mathematics (1973), p. 551-571
[8] Jean-Lin Journé, “Calderón-Zygmund operators on product spaces”, Revista Matemética Iberoamericana 1 (1985) no. 3, p. 55-91
[9] Carlos Kenig, Gustavo Ponce & Luis Vega, “Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle”, Comm. Pure Appl. Math. (1993), p. 527-620
[10] Michael Lacey & Christoph Thiele, “On Calderón’s conjecture”, Ann. of Math. (2) 149 (1999) no. 2, p. 475-496 Article
[11] Camil Muscalu, Jill Pipher, Terence Tao & Christoph Thiele, “Bi-parameter paraproducts”, Acta Mathematica (2004), p. 269-296  MR 2134868
[12] Camil Muscalu, Jill Pipher, Terence Tao & Christoph Thiele, “Multi-parameter paraproducts”, Rev. Mat. Iberoamericana (2006), p. 963-976
[13] Camil Muscalu & Wilhem Schlag, Classical and Multilinear Harmonic Analysis, Cambridge University Press, 2013
[14] Camil Muscalu, Terence Tao & Christoph Thiele, “Multi-linear operators given by singular multipliers”, J. Amer. Math. Soc. (2002), p. 469-496
[15] Zhuoping Ruan, “Multi-parameter Hardy spaces via discrete Littlewood-Paley theory”, Anal. Theory Appl. 26 (2010) no. 2, p. 122-139
[16] Prabath Silva, “Vector Valued Inequalities for Families of Bilinear Hilbert Transforms and Applications to Bi-parameter Problems”, J. Lond. Math. Soc. (2014), p. 695-724
Copyright Cellule MathDoc 2018 | Crédit | Plan du site