Centre de diffusion de revues académiques mathématiques

 
 
 
 

Journées équations aux dérivées partielles

Table des matières de ce volume | Article précédent | Article suivant
Kleber Carrapatoso
Asymptotic behaviour of the Landau equation with Coulomb potential
Journées équations aux dérivées partielles (2016), Exp. No. 4, 13 p., doi: 10.5802/jedp.645
Article PDF

Résumé - Abstract

This is the written version of a talk given at the Journées Équations aux Dérivées Partielles 2016 at Roscoff. We present in this note recent results on the asymptotic behaviour of the Landau equation with Coulomb potential, in both spatially homogeneous and inhomogeneous cases. These results have been obtained in joint works with L. Desvillettes and L. He in [6], and with S. Mischler in [7].

Bibliographie

[1] R. Alexandre & C. Villani, “On the Landau approximation in plasma physics”, Ann. Inst. H. Poincaré Anal. Non Linéaire 21 (2004) no. 1, p. 61-95
[2] A. A. Arsenʼev & N. V. Peskov, “The existence of a generalized solution of Landau’s equation”, Ž. Vyčisl. Mat. i Mat. Fiz. 17 (1977) no. 4, p. 1063-1068, 1096
[3] C. Baranger & C. Mouhot, “Explicit spectral gap estimates for the linearized Boltzmann and Landau operators with hard potentials”, Rev. Mat. Iberoamericana 21 (2005) no. 3, p. 819-841 Article |  MR 2231011
[4] K. Carrapatoso, “Exponential convergence to equilibrium for the homogeneous Landau equation with hard potentials”, Bull. Sci. Math. 139 (2015) no. 7, p. 777-805
[5] K. Carrapatoso, “On the rate of convergence to equilibrium for the homogeneous Landau equation with soft potentials”, J. Math. Pures Appl. 104 (2015) no. 2, p. 276-310
[6] K. Carrapatoso, L. Desvillettes & L. He, “Estimates for the large time behavior of the Landau equation in the Coulomb case”, https://arxiv.org/abs/1510.08704, to appear in Arch. Rational Mech. Anal.
[7] K. Carrapatoso & S. Mischler, “Landau equation for very soft and Coulomb potentials near Maxwellians”, https://arxiv.org/abs/1512.01638, to appear in Ann. PDE
[8] K. Carrapatoso, I. Tristani & K.-C. Wu, “Cauchy problem and exponential stability for the inhomogeneous Landau equation”, Arch. Rational Mech. Anal. 221 (2016) no. 1, p. 363-418 Article
[9] C. Cercignani, “$H$-theorem and trend to equilibrium in the kinetic theory of gases”, Arch. Mech. (Arch. Mech. Stos.) 34 (1982), p. 231-241 (1983)
[10] I. Csiszar, “Information-type measures of difference of probability distributions and indirect observations”, Stud. Sci. Math. Hung. 2 (1967), p. 299-318
[11] P. Degond & M. Lemou, “Dispersion relations for the linearized Fokker-Planck equation”, Arch. Ration. Mech. Anal. 138 (1997), p. 137-167
[12] L. Desvillettes, “Entropy dissipation estimates for the Landau equation in the Coulomb case and applications”, J. Funct. Anal. 269 (2015) no. 5, p. 1359-1403 Article
[13] L. Desvillettes, C. Mouhot & C. Villani, “Celebrating Cercignani’s conjecture for the Boltzmann equation”, Kinet. Relat. Models 4 (2011), p. 277-294
[14] L. Desvillettes & C. Villani, “On the spatially homogeneous Landau equation for hard potentials. Part II. H-Theorem and applications”, Commun. Partial Differential Equations 25 (2000) no. 1-2, p. 261-298  MR 1737548
[15] L. Desvillettes & C. Villani, “On the trend to global equilibrium for spatially inhomogeneous kinetic systems: the Boltzmann equation”, Invent. Math. 159 (2005) no. 2, p. 245-316 Article
[16] R. J. DiPerna & P.-L. Lions, “On the Cauchy problem for Boltzmann equations: global existence and weak stability”, Ann. of Math. (2) 130 (1989) no. 2, p. 321-366 Article
[17] N. Fournier, “Uniqueness of bounded solutions for the homogeneous Landau equation with a Coulomb potential”, Comm. Math. Phys. 299 (2010) no. 3, p. 765-782 Article
[18] M. Gualdani, S. Mischler & C. Mouhot, “Factorization for non-symmetric operators and exponential H-Theorem”, https://arxiv.org/abs/1006.5523
[19] Y. Guo, “The Landau equation in a periodic box”, Comm. Math. Phys. 231 (2002), p. 391-434
[20] S. Kullback, “A lower bound for discrimination information in terms of variation”, IEEE Trans. Inf. The. 4 (1967), p. 126-127
[21] C. Mouhot, “Explicit coercivity estimates for the linearized Boltzmann and Landau operators”, Comm. Part. Diff Equations 261 (2006), p. 1321-1348
[22] C. Mouhot, “Rate of convergence to equilibrium for the spatially homogeneous Boltzmann equation with hard potentials”, Comm. Math. Phys. 261 (2006), p. 629-672
[23] C. Mouhot & L. Neumann, “Quantitative perturbative study of convergence to equilibrium for collisional kinetic models in the torus”, Nonlinearity 19 (2006) no. 4, p. 969-998 Article
[24] C. Mouhot & R. Strain, “Spectral gap and coercivity estimates for the linearized Boltzmann collision operator without angular cutoff”, J. Math. Pures Appl. 87 (2007), p. 515-535
[25] R. M. Strain & Y. Guo, “Almost exponential decay near Maxwellian”, Comm. Partial Differential Equations 31 (2006) no. 1-3, p. 417-429 Article
[26] R. M. Strain & Y. Guo, “Exponential decay for soft potentials near Maxwellian”, Arch. Ration. Mech. Anal. 187 (2008) no. 2, p. 287-339 Article
[27] G. Toscani & C. Villani, “On the trend to equilibrium for some dissipative systems with slowly increasing a priori bounds”, J. Statist. Phys. 98 (2000) no. 5-6, p. 1279-1309 Article
[28] C. Villani, “On the Cauchy problem for Landau equation: sequential stability, global existence”, Adv. Differential Equations 1 (1996) no. 5, p. 793-816
[29] C. Villani, “On a new class of weak solutions to the spatially homogeneous Boltzmann and Landau equations”, Arch. Rational Mech. Anal. 143 (1998) no. 3, p. 273-307
Copyright Cellule MathDoc 2018 | Crédit | Plan du site