Centre de diffusion de revues académiques mathématiques

 
 
 
 

Journées équations aux dérivées partielles

Table des matières de ce volume | Article suivant
Nathalie Ayi
Derivation of the linear Boltzmann equation without cut-off starting from particles
Journées équations aux dérivées partielles (2017), Exp. No. 1, 12 p., doi: 10.5802/jedp.651
Article PDF

Résumé - Abstract

We provide a rigorous derivation of the linear Boltzmann equation without cut-off starting from a system of particles interacting via a potential with infinite range as the number of particles N goes to infinity under the Boltzmann-Grad scaling. The main difficulty in our context is that, due to the infinite range of the potential, a non-integrable singularity appears in the angular collision kernel, making no longer valid the single-use of Lanford’s strategy. Our proof relies then on a combination of Lanford’s strategy, of tools developed recently by Bodineau, Gallagher and Saint-Raymond to study the collision process, and of new duality arguments to study the additional terms associated to the long-range interaction, leading to some explicit weak estimates.

Bibliographie

[1] R. Alexandre, “Remarks on 3D Boltzmann linear equation without cutoff”, Transport Theory and Statistical Physics 28 (1999) no. 5, p. 433-473 Article
[2] R. Alexandre, Y. Morimoto, S. Ukai, C.-J. Xu & T. Yang, “Global Existence and Full Regularity of the Boltzmann Equation Without Angular Cutoff”, Communications in Mathematical Physics 304 (2011) no. 2, p. 513-581
[3] R. Alexandre, Y. Morimoto, S. Ukai, C.-J. Xu & T. Yang, “The Boltzmann equation without angular cutoff in the whole space: II, Global existence for hard potential”, Analysis and Applications 09 (2011) no. 02, p. 113-134 Article
[4] R. Alexandre, Y. Morimoto, S. Ukai, C.-J. Xu & T. Yang, “The Boltzmann equation without angular cutoff in the whole space: I, Global existence for soft potential”, Journal of Functional Analysis 262 (2012) no. 3, p. 915 -1010 Article
[5] R. Alexandre & C. Villani, “On The Boltzmann Equation For Long-Range Interactions”, Comm. Pure Appl. Math 55 (2002), p. 30-70
[6] N. Ayi, “From Newton’s law to the Boltzmann equation without cut-off”, Comm. Math. Phys. 350 (2017) no. 3, p. 1219-1274
[7] T. Bodineau, I. Gallagher & L. Saint-Raymond, “The Brownian motion as the limit of a deterministic system of hard-spheres”, Inventiones mathematicae 203 (2015) no. 2, p. 493-553 Article
[8] I. Gallagher, L. Saint-Raymond & B. Texier, From Newton to Boltzmann: Hard Spheres and Short-range Potentials, Zurich Lectures in Advanced Mathematics, European Mathematical Society, 2013
[9] H. Grad, “Principles of the Kinetic Theory of Gases”, Handbuch der Physik 12 (1958), p. 205-294 Article
[10] P. T. Gressman, R. M. Strain & R. V. Kadison, “Global classical solutions of the Boltzmann equation with long-range interactions”, Proceedings of the National Academy of Sciences of the United States of America 107 (2010) no. 13, p. 5744-5749
[11] F. King, BBGKY hierarchy for positive potentials, Ph. D. Thesis, Dept. Mathematics, Univ. California, Berkeley, 1975
[12] O. E. Lanford, Time evolution of large classical systems, in J. Moser, éd., Dynamical Systems, Theory and Applications, Lecture Notes in Physics 38, Springer Berlin Heidelberg, 1975, p. 1-111 Article
[13] J. L. Lebowitz & H. Spohn, “Steady state self-diffusion at low density”, Journal of Statistical Physics 29 (1982) no. 1, p. 39-55 Article
[14] M. Pulvirenti, C. Saffirio & S. Simonella, “On the validity of the Boltzmann equation for short range potentials”, Reviews in Mathematical Physics 26 (2014) no. 02 Article
[15] H. van Beijeren, O. E. Lanford, J. L. Lebowitz & H. Spohn, “Equilibrium time correlation functions in the low-density limit”, Journal of Statistical Physics 22 (1980) no. 2, p. 237-257 Article
Copyright Cellule MathDoc 2018 | Crédit | Plan du site